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Editorial Note

The papers in this volume result from the second conference on the Philosophy and
Theory of Artificial Intelligence (PT-AI) 21-22.09.2013 that I organised in Oxford
where I was a research fellow — for details on the conference, see http://www.pt-ai.
org/.

For this conference, we had 103 extended abstract submissions by the deadline,
which were reviewed double-blind by at least two referees. Thirty-four submissions,
i.e. 33 %, were accepted for presentation. In a second reviewing phase, submitted
full papers plus papers from invited speakers at the conference and papers from
additional invited authors were openly reviewed and discussed between all these
authors. The second reviewing phase resulted in 9 further rejections, so we now
have 27 submitted papers, 3 from invited speakers and 3 invited ones, for a
total of 33. Finally, the volume was reviewed by the publisher, which resulted in
further revisions. We are grateful for all the hard work that went into this volume.
Unfortunately, this process of reviewing, inviting additional authors, revising, re-
reviewing, etc., took much longer than anticipated so we submit the final version to
the publisher more than one and a half years after the conference.

Anatolia College/ACT, Thessaloniki, Greece Vincent C. Miiller
19 June 2015
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Chapter 1
New Developments in the Philosophy of AI

Vincent C. Miiller

Abstract The philosophy of Al has seen some changes, in particular: (1) Al moves
away from cognitive science, and (2) the long term risks of Al now appear to
be a worthy concern. In this context, the classical central concerns — such as the
relation of cognition and computation, embodiment, intelligence & rationality, and
information — will regain urgency.

Keywords AI risk ¢ Cognitive science ¢ Computation ¢ Embodiment
* Philosophy of AI e« Philosophy of artificial intelligence e Rationality e
Superintelligence

1.1 Getting Interesting Again?

We set the framework for this conference broadly by these questions: “What are
the necessary conditions for artificial intelligence (if any); what are sufficient ones?
What do these questions relate to the conditions for intelligence in humans and other
natural agents? What are the ethical and societal problems that artificial intelligence
raises, or will raise?” — thus far, this was fairly similar to the themes for the 2011
conference (Miiller 2012, 2013).

This introduction is also a meditation on a remark by one of our keynote speakers,
Daniel Dennett, who wrote on Twitter: “In Oxford for the Al conference. I plan to
catch up on the latest developments. It’s getting interesting again.” (@danieldennett
19.09.2013, 11:05 pm). If Dennett thinks “it’s getting interesting” that is good news,
and it is significant that he remarks that this interest appears again.

In the following year, the AAAI invited me to speak about “What’s Hot in the
Philosophy of AI?” (their title) — so the organization of Al researchers around the
world also thinks it might be worthwhile to have a look at philosophy again. And

V.C. Miiller (E<)
Future of Humanity Institute, Department of Philosophy & Oxford Martin School,
University of Oxford, Oxford, UK

Anatolia College/ACT, Thessaloniki, Greece
e-mail: vmueller @act.edu; http://www.sophia.de
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2 V.C. Miiller

indeed, one of the major topics in the AAAI plenary discussion was the social
impact of Al; the president of AAAI has now made ethics an ‘official’ topic of
concern (Ditterich and Horowitz 2015).

So, there are indications that ‘philosophy of artificial intelligence’ might have
an impact, again. I think there are two major changes that make this the case:
The changing relation to cognitive science and the increasing urgency of ethical
concerns.

1.2 Al & CogSci: A Difficult Marriage

The traditional view of Al and Cognitive Science has been that they are two sides of
the same coin, two efforts that require each other or even the same effort with two
different methods. The typical view in the area of ‘good old fashioned AI’ (GOFALI,
as Haugeland called it) until the 1980s was that the empirical discipline of cognitive
science finds how natural cognitive systems (particularly humans) work, while the
engineering discipline of Al tests the hypotheses of cognitive science and uses them
for progress in its production of artificial cognitive systems. This marriage was thus
made on the basis of a philosophical analysis of joint assumptions — so philosophy
served as the ‘best man’.

This collaboration was made possible, or we at least facilitated, by the by classi-
cal ‘machine functionalism, going back to (Putnam 1960) and nicely characterized
by Churchland: “What unites them [the cognitive creatures] is that [...] they are
all computing the same, or some part of the same abstract <<sensory input, prior
state>, <motor output, subsequent state>> function.” (Churchland 2005: 333). If
cognition is thus a computational process over symbolic representation (this thesis is
often called ‘computationalism’) then computation can be discovered by cognitive
science and then implemented by Al in an artificial computational system. This
was typically complemented by a view of cognition as central ‘control’ of an agent
that follows a structure of sense-model-plan-act; that rationally ‘selects’ an action,
typically given some utility function. — All these components have been the target
of powerful criticism over the years.

1.3 After GOFAIL ‘“What’s Hot in the Philosophy of AI?”

Two factors are different now from the way things looked only 10 or 20 years ago:
(a) We now have much more impressive technology, and (b) we have a different
cognitive science. The result is, or so I will argue, that we get a new theory of Al
and new ethics of Al

It currently looks like after the cold ‘Al winter’ in the 1980s and 90s we are
already through a spring and staring a nice and warm summer with Al entering
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the mainstream of computing and Al products — even if much of this success does
not carry the name of ‘artificial intelligence’ any more. This is a version of the well-
known ‘Al curse’: in the formulation known as ‘Larry Tesler’s Theorem’ (ca. 1970):
“Intelligence is whatever machines haven’t done yet.” What is successful in Al takes
a different name (e.g. ‘machine learning’), and what is left for the old name are the
currently impossible problems and the long—term visions.

A lot of classical Al problems are now solved and even thought trivial (e.g.
real-life character recognition); robotics is now moving beyond the classic DDD
problems (dirty, dangerous, dull). It appears that this is largely due to massively
improved computing resources (processing speed and the ability to handle large
data sets), the continued ‘grind’ forward towards better algorithms and a certain
focus on feasible narrower problems. It does not seem to be due to massive new
deep insight.

What does this mean for our marriage? Is there a divorce in the offing? The
cognitive science side has largely learned to live with in separation — not quite a
divorce but a more independent life. There is no more the assumption that cognition
must be algorithmic (computational) symbol processing but rather a preference for
broadly computational models. A strong emphasis on empirical work supports a
tendency of cognitive science to undergo a metamorphosis from a multidisciplinary
enterprise to another word for cognitive psychology. Cognitive science now involves
embodied theories, dynamic theories, etc. — and it tends to find its own path now,
not as adjunct to Al

1.4 Ethics (Big and Small)

It has always been clear that Al, esp. higher level Al, will have an ‘impact on
society’ (e.g. surveillance, jobs, weapons & war, care, ...) and that some of that
impact is undesirable, perhaps requiring policy interference. There is also the impact
on the self-image of humans that makes Al, and especially robotics, have such a
powerful impression on people who care a lot less about other new technologies.
This is what I would call ‘small ethics’, the kind of ethics that concerns impact on a
relatively small scale.

There is also ‘big ethics’ of Al that asks about a very large impact on society, and
on the human kind. A discussion of this issue is relatively new in academic circles.
Stuart Russell, one of our keynote speakers, had called it the question “what if we
succeed?” (at IJCAI 2013) — (Bostrom 2014; Russell et al. 2015).

If the results of the paper by Bostrom and myself in this volume are to be believed
(Miiller and Bostrom 2016), then experts estimate the probability of achieving ‘high
level machine intelligence’ to go over 50 % by 2040-2050, over 90 % by 2075.
Broadly, this will happen soon enough to think about it now, especially since 30 %
of the same experts think, that the outcome of achieving such machine intelligence
will be ‘bad’ or ‘very bad’ for humanity.
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I expect that this theme will create much discussion and interest, and that its
speculation about what can be and what will be forces a return to the ‘classical’
themes of the philosophy of Al, including the relation of Al and cognitive science.
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Chapter 2
Rationality and Intelligence: A Brief Update

Stuart Russell

Abstract The long-term goal of Al is the creation and understanding of intelli-
gence. This requires a notion of intelligence that is precise enough to allow the
cumulative development of robust systems and general results. The concept of
rational agency has long been considered a leading candidate to fulfill this role.
This paper, which updates a much earlier version (Russell, Artif Intell 94:57-77,
1997), reviews the sequence of conceptual shifts leading to a different candidate,
bounded optimality, that is closer to our informal conception of intelligence and
reduces the gap between theory and practice. Some promising recent developments
are also described.

Keywords Rationality ¢ Intelligence * Bounded rationality * Metareasoning

2.1 Artificial Intelligence

Al is a field whose ultimate goal has often been somewhat ill-defined and subject
to dispute. Some researchers aim to emulate human cognition, others aim at
the creation of intelligence without concern for human characteristics, and still
others aim to create useful artifacts without concern for abstract notions of
intelligence.

My own motivation for studying Al is to create and understand intelligence
as a general property of systems, rather than as a specific attribute of humans.
I believe this to be an appropriate goal for the field as a whole, and it certainly
includes the creation of useful artifacts—both as a spin-off from and a driving force
for technological development. The difficulty with this “creation of intelligence”
view, however, is that it presupposes that we have some productive notion of what
intelligence is. Cognitive scientists can say “Look, my model correctly predicted

S. Russell ()
Computer Science Division, University of California, Berkeley, CA 94720, USA
e-mail: russell @cs.berkeley.edu
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this experimental observation of human cognition,” and artifact developers can say
“Look, my system is worth billions of euros,” but few of us are happy with papers
saying “Look, my system is intelligent.”

A definition of intelligence needs to be formal—a property of the system’s
input, structure, and output—so that it can support analysis and synthesis. The
Turing test does not meet this requirement, because it references an informal (and
parochial) human standard. A definition also needs to be general, rather than a
list of specialized faculties—planning, learning, game-playing, and so on—with a
definition for each. Defining each faculty separately presupposes that the faculty is
necessary for intelligence; moreover, the definitions are typically not composable
into a general definition for intelligence.

The notion of rationality as a property of agents—entities that perceive and act—
is a plausible candidate that may provide a suitable formal definition of intelligence.
Section 2.2 provides background on the concept of agents. The subsequent sections,
following the development in Russell (1997), examine a sequence of definitions
of rationality from the history of Al and related disciplines, considering each as a
predicate P that might be applied to characterize systems that are intelligent:

e Pi: Perfect rationality, or the capacity to generate maximally successful
behaviour given the available information.

* P,: Calculative rationality, or the in-principle capacity to compute the perfectly
rational decision given the initially available information.

* P3: Metalevel rationality, or the capacity to select the optimal combination of
computation-sequence-plus-action, under the constraint that the action must be
selected by the computation.

* P4 Bounded optimality, or the capacity to generate maximally successful
behaviour given the available information and computational resources.

For each P, I shall consider three simple questions. First, are P-systems interesting,
in the sense that their behaviour is plausibly describable as intelligent? Second,
could P-systems ever exist? Third, to what kind of research and technological
development does the study of P-systems lead?

Of the four candidates, P4, bounded optimality, comes closest to meeting the
needs of Al research. It is more suitable than P; through P; because it is a
real problem with real and desirable solutions, and also because it satisfies some
essential intuitions about the nature of intelligence. Some important questions about
intelligence can only be formulated and answered within the framework of bounded
optimality or some relative thereof.

2.2 Agents

In the early decades of AI’s history, researchers tended to define intelligence with
respect to specific tasks and the internal processes those tasks were thought to
require in humans. Intelligence was believed to involve (among other things) the
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ability to understand language, the ability to reason logically, and the ability to
solve problems and construct plans to satisfy goals. At the core of such capabilities
was a store of knowledge. The standard conception of an Al system was as a
sort of consultant: something that could be fed information and could then answer
questions. The output of answers was not thought of as an action about which the Al
system had a choice, any more than a calculator has a choice about what numbers
to display on its screen given the sequence of keys pressed.

The view that Al is about building intelligent agents—entities that sense their
environment and act upon it—became the mainstream approach of the field only
in the 1990s (Russell and Norvig 1995; Dean et al. 1995), having previously been
the province of specialized workshops on “situatedness” and “embeddedness”. The
“consultant” view is a special case in which answering questions is a form of
acting—a change of viewpoint that occurred much earlier in the philosophy of
language with the development of speech act theory. Now, instead of simply giving
answers, a consulting agent could refuse to do so on the grounds of privacy or
promise to do so in return for some consideration. The agent view also naturally
encompasses the full variety of tasks and platforms—from robots and factories
to game-playing systems and financial trading systems—in a single theoretical
framework.

What matters about an agent is what it does, not how it does it. An agent can
be defined mathematically by an agent function that specifies how an agent behaves
under all circumstances. More specifically, let O be the set of percepts that the agent
can observe at any instant (with O* being the set of observation sequences of any
length) and A be the set of possible actions the agent can carry out in the external
world (including the action of doing nothing). The agent function is a mapping
f: O* — A. This definition is depicted in the upper half of Fig. 2.1.

As we will see in Sect. 2.3, rationality provides a normative prescription for agent
functions and does not specify—although it does constrain—the process by which
the actions are selected. Rather than assume that a rational agent must, for example,
reason logically or calculate expected utilities, the arguments for (Nilsson 1991) or
against (Agre and Chapman 1987; Brooks 1989) the inclusion of such cognitive

Fig. 2.1 The agent receives
percepts from the
environment and generates a
behaviour which in turn
causes the environment to
generate a state history. The
performance measure
evaluates the state history to
arrive at the value of the agent

Percept history

Agent function

Behaviour

EnvironmerD

State history

Performance measure
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faculties must justify their position on the grounds of efficacy in representing a
desirable agent function. A designer of agents has, a priori, complete freedom in
choosing the specifications, boundaries, and interconnections of subsystems, as long
they they compose to form a complete agent. In this way one is more likely to avoid
the “hallucination” problem that arises when the fragility of a subsystem is masked
by having an intelligent human providing input to it and interpreting its outputs.

Another important benefit of the agent view of Al is that it connects the
field directly to others that have traditionally looked on the embedded agent as a
natural topic of study, including economics, operations research, control theory, and
even evolutionary biology. These connections have facilitated the importation of
technical ideas (Nash equilibria, Markov decision processes, and so on) into Al,
where they have taken root and flourished.

2.3 Perfect Rationality

So which agent functions are intelligent? Clearly, doing the right thing is more
intelligent that doing the wrong thing. The rightness of actions is captured by the
notion of rationality: informally, an action is rational to the extent that is consistent
with the agent’s goals (or the task for which it was designed), from the point of view
of the information possessed by the agent.

Rationality is, therefore, always understood relative to the agent’s ultimate goals.
These are expressed mathematically by a performance measure U on sequences
of environment states. Let V(f, E, U) denote the expected value according to U
obtained by an agent function f in environment class E, where (for now) we will
assume a probability distribution over elements of E. Then a perfectly rational agent
is defined by an agent function f; such that

Jopt = argmax,V(f,E, U) 2.1

This is just a fancy way of saying that the best agent does the best it can. The point is
that perfectly rational behaviour is a well-defined function of the task environment
fixed by E and U.

Turning to the three questions listed in Sect.2.1: Are perfectly rational agents
interesting things to have? Yes, certainly—if you have one handy, you prefer it
to any other agent. A perfectly rational agent is, in a sense, perfectly intelligent.
Do they exist? Alas no, except for very simple task environments, such as those
in which every behavior is optimal (Simon 1958). Physical mechanisms take
time to perform computations, while real-world decisions generally correspond to
intractable problem classes; imperfection is inevitable.

Despite their lack of existence, perfectly rational agents have, like imaginary
numbers, engendered a great deal of interesting research. For example, economists
prove nice results about economies populated by them and game-theoretic mecha-
nism designers much prefer to assume perfect rationality on the part of each agent.
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Far more important for Al, however, was the reduction from a global optimization
problem (Eq.2.1) to a local one: from the perfect rationality of agents to the
perfect rationality of individual actions. That is, a perfectly rational agent is one
that repeatedly picks an action that maximizes the expected utility of the next
state. This reduction involved three separate and largely unconnected results: the
axiomatic utility theory of von Neumann and Morgenstern (1944) (which actually
takes for granted the agent’s ability to express preferences between distributions
over immediate outcomes), Bellman’s 1957 theory of sequential decisions, and
Koopmans’ 1972 analysis of preferences over time in the framework of multiat-
tribute utility theory (Keeney and Raiffa 1976).

While utility is central to the decision-theoretic notion of perfect rationality,
goals are usually considered to define the task for a logic-based agent: according
to Newell (1982), such an agent is perfectly rational if each action is part of a plan
that will achieve one of the agent’s goals. There have been attempts to define goals in
terms of utilities, beginning with Wellman and Doyle (1991), but difficulties remain
because goals are essentially incomplete as task specifications. They do not specify
what to do when goal achievement cannot be guaranteed, or when goals conflict,
or when several plans are available for achieving a goal, or when the agent has
achieved all its goals. It may be better to interpret goals not as primary definitions of
the agent’s task but as subsidiary devices for focusing computational effort with an
overall decision-theoretic context. For example, someone moving to a new city may,
after weighing many alternatives and tradeoffs under uncertainty, settle on the goal
of buying a particular apartment and thereafter focus their deliberations on finding
a plan to achieve that goal, to the exclusion of other possibilities. At the moment we
do not have a good understanding of goal formation by a decision-theoretic agent,
but it is clear that such behavior cannot be analyzed within the framework of perfect
rationality.

As discussed so far, the framework does not say where the beliefs and the
performance measure reside—they could be in the head of the designer or of the
agent itself. If they are in the designer’s head, the designer has to do all the work
to build the agent function, anticipating all possible percept sequences. If they are
in the agent’s head, the designer can delegate the work to the agent; for example,
in the setting of reinforcement learning, it is common to equip the agent with
a fixed capacity to extract a distinguished reward signal from the environment,
leaving the agent to learn the corresponding utility function on states. The designer
may also equip the agent with a prior over environments (Carnap 1950), leaving
the agent to perform Bayesian updating as it observes the particular environment
it inhabits. Solomonoff (1964) and Kolmogorov (1965) explored the question of
universal priors over computable environments; universality, unfortunately, leads to
undecidability of the learning problem. Hutter (2005) makes an ambitious attempt to
define a universal yet computable version of perfect rationality, but does not pretend
to provide the instantaneous decisions required for an actual P;-system; instead, this
work belongs in the realm of P,-systems, or calculatively rational agents.

Perhaps the biggest open question for the theory of perfect rationality lies
in its extension from single-agent to multi-agent environments. Game theorists
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have proposed many solution concepts—essentially, definitions of admissible
strategies—but have not identified one that yields a unique recommendation (up to
tie-breaking) for what to do (Shoham and Leyton-Brown 20009).

2.4 Calculative Rationality

The theory of P, perfect rationality, says nothing about implementation; P»,
calculative rationality, on the other hand, is concerned with programs for computing
the choices that perfect rationality stipulates.

To discuss calculative rationality, then, we need to discuss programs. The agent’s
decision-making system can be divided into the machine M, which is considered
fixed, and the agent program [, which the designer chooses from the space %), of
all programs that the machine supports. (M need not be a raw physical computer, of
course; it can be a software “virtual machine” at any level of abstraction.) Together,
the machine M and the agent program [ define an agent function f = Agent(l, M),
which, as noted above, is subject to evaluation. Conversely, [ is an implementation
of the agent function f on M; there may, of course, be many such implementations,
but also, crucially, there may be none (see Sect. 2.6).

It is important to understand the distinction between an agent program and the
agent function it implements. An agent program may receive as input the current
percept, but also has internal state that reflects, in some form, the previous percepts.
It outputs actions when they have been selected. From the outside, the behaviour
of the agent consists of the selected actions interspersed with inaction (or whatever
default actions the machine generates). Depending on how long the action selection
takes, many percepts may go by unnoticed by the program.

Calculative rationality is displayed by programs that, if executed infinitely fast,
would result in perfectly rational behaviour. That is, at time ¢, assuming it is
not already busy computing its choice for some previous time step, the program
computes the value fop([01, . . ., 04]).

Whereas perfect rationality is highly desirable but does not exist, calculative
rationality often exists—its requirements can be fulfilled by real programs for many
settings—but it is not necessarily a desirable property. For example, a calculatively
rational chess program will choose the “right” move, but may take 10°° times too
long to do so.

The pursuit of calculative rationality has nonetheless been the main activity of
theoretically well-founded research in Al; the field has been filling in a table whose
dimensions are the various environment properties (deterministic or stochastic, fully
or partially observable, discrete or continuous, dynamic or static, single-agent or
multi-agent, known or unknown) for various classes of representational formalisms
(atomic, propositional, or relational). In the logical tradition, planning systems and
situation-calculus theorem-provers satisfy the conditions of calculative rationality
for discrete, fully observable environments; moreover, the power of first-order logic
renders the required knowledge practically expressible for a wide range of problems.
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In the decision-theoretic tradition, there are calculatively rational agents based on
algorithms for solving fully or partially observable Markov decision processes,
defined initially atomic by atomic formalisms (e.g., transition matrices), later by
propositional representations (e.g., dynamic Bayesian networks), and now by first-
order probabilistic languages (Srivastava et al. 2014). For continuous domains,
stochastic optimal control theory (Kumar and Varaiya 1986) has solved some
restricted classes of problems, while many others remain open.

In practice, neither the logical nor the decision-theoretic traditions can avoid
the intractability of the decision problems posed by the requirement of calculative
rationality. One response, championed by Levesque (1986), is to rule out sources
of exponential complexity in the representations and reasoning tasks addressed, so
that calculative and perfect rationality coincide—at least, if we ignore the little
matter of polynomial-time computation. The accompanying research results on
tractable sublanguages are perhaps best seen as indications of where complexity
may be an issue rather than as a solution to the problem of complexity, since real-
world problems usually require exponentially large representations under the input
restrictions stipulated for tractable inference (Doyle and Patil 1991).

The most common response to complexity has been to use various speedup
techniques and approximations in the hope of getting reasonable behaviour. Al has
developed a very powerful armoury of methods for reducing the computational cost
of decision making, including heuristic evaluation functions, pruning techniques,
sampling methods, problem decomposition, hierarchical abstraction, compilation,
and the application of metalevel control. Although some of these methods can retain
guarantees of optimality and are effective for moderately large problems that are
well structured, it is inevitable that intelligent agents will be unable to act rationally
in all circumstances. This observation has been a commonplace since the very
beginning of Al Yet systems that select suboptimal actions fall outside calculative
rationality per se, and we need a better theory to understand them.

2.5 Metalevel Rationality

Metalevel rationality, also called Type II rationality by Good (1971), is based
on the idea of finding an optimal tradeoff between computational costs and
decision quality. Although Good never made his concept of Type II rationality very
precise—he defines it as “the maximization of expected utility taking into account
deliberation costs”—it is clear that the aim was to take advantage of some sort
of metalevel architecture to implement this tradeoff. Metalevel architecture is a
design philosophy for intelligent agents that divides the agent program into two
(or more) notional parts. The object level carries out computations concerned with
the application domain—for example, projecting the results of physical actions,
computing the utility of certain states, and so on. The metalevel is a second decision-
making process whose application domain consists of the object-level computations
themselves and the computational objects and states that they affect. Metareasoning
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has a long history in Al, going back at least to the early 1970s (see Russell and
Wefald 1991a, for historical details). One can also view selective search methods
and pruning strategies as embodying metalevel expertise concerning the desirability
of pursuing particular object-level search operations.

The theory of rational metareasoning formalizes Good’s intuition that the
metalevel can “do the right thinking.” The basic idea is that object-level compu-
tations are actions with costs (the passage of time) and benefits (improvements
in decision quality). A rational metalevel selects computations according to their
expected utility. Rational metareasoning has as a precursor the theory of information
value (Howard 1966)—the notion that one can calculate the decision-theoretic
value of acquiring an additional piece of information by simulating the decision
process that would be followed given each possible outcome of the information
request, thereby estimating the expected improvement in decision quality averaged
over those outcomes. The application to computational processes, by analogy to
information-gathering, seems to have originated with Matheson (1968). In Al,
Horvitz (1987, 1989), Breese and Fehling (1990), and Russell and Wefald (1989,
1991a,b) all showed how the idea of value of computation could solve the basic
problems of real-time decision making.

Perhaps the simplest form of metareasoning occurs when the object level is
viewed by the metalevel as a black-box anytime (Dean and Boddy 1988) or flex-
ible (Horvitz 1987) algorithm, i.e., an algorithm whose decision quality depends on
the amount of time allocated to computation. This dependency can be represented by
a performance profile and the metalevel simply finds the optimal tradeoff between
decision quality and the cost of time (Simon 1955). More complex problems arise
if one wishes to build complex real-time systems from anytime components. First,
one has to ensure the interruptibility of the composed system—that is, to ensure
that the system as a whole can respond robustly to immediate demands for output.
The solution is to interleave the execution of all the components, allocating time
to each component so that the total time for each complete iterative improvement
cycle of the system doubles at each iteration. In this way, we can construct a
complex system that can handle arbitrary and unexpected real-time demands just
as if it knew the exact time available in advance, with just a small (<4) constant
factor penalty in speed (Russell and Zilberstein 1991). Second, one has to allocate
the available computation optimally among the components to maximize the total
output quality. Although this is NP-hard for the general case, it can be solved
in time linear in program size when the call graph of the components is tree-
structured (Zilberstein and Russell 1996). Although these results are derived in the
simple context of anytime algorithms with well-defined performance profiles, they
point to the possibility of more general schemes for allocation of computational
resources in complex systems.

The situation gets more interesting when the metalevel can go inside the object
level and direct its activities, rather than just switching it on and off. The work
done with Eric Wefald looked in particular at search algorithms, in which the
object-level computations extend projections of the results of various courses of
actions further into the future. For example, in chess programs, each object-level
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computation expands a leaf node of the game tree and advances the clock; it is
an action in the so-called joint-state Markov decision process, whose state space
is the Cartesian product of the object-level state space (which includes time) and
the metalevel state space of computational states—in this case, partially generated
game trees. The actions available are to expand a leaf of the game tree or to terminate
search and make a move on the board. It is possible to derive a greedy or myopic
approximation to the value of each possible computation and thereby to control
search effectively. This method was implemented for two-player games, two-player
games with chance nodes, and single-agent search. In each case, the same general
metareasoning scheme resulted in efficiency improvements of roughly an order
of magnitude over traditional, highly-engineered algorithms (Russell and Wefald
1991a).

An independent thread of research on metalevel control began with work by Koc-
sis and Szepesvari (2006) on the UCT algorithm, which operates in the context of
Monte Carlo tree search (MCTS) algorithms. In MCTS, each computation takes the
form of a simulation of a randomized sequence of actions leading from a leaf of the
current tree to a terminal state. UCT is a metalevel heuristic for selecting a leaf from
which to conduct the next simulation, and has contributed to dramatic improvements
in Go-playing algorithms over the last few years. It views the metalevel decision
problem as a multi-armed bandit problem (Berry and Fristedt 1985) and applies
an asymptotically near-optimal bandit decision rule recursively to make a choice
of which computation to do next. The application of bandit methods to metalevel
control seems quite natural, because a bandit problem involves deciding where to
do the next “experiment” to find out how good each bandit arm is. Are bandit
algorithms such as UCT approximate solutions to some particular case of the
metalevel decision problem defined by Russell and Wefald? The answer, perhaps
surprisingly, is no. The essential difference is that, in bandit problems, every
trial involves executing a real object-level action with real costs, whereas in the
metareasoning problem the trials are simulations whose cost is usually independent
of the utility of the action being simulated. Hence UCT applies bandit algorithms to
problems that are not bandit problems. A careful analysis (Hay et al. 2012) shows
that metalevel problems in their simplest form are isomorphic to selection problems,
a class of statistical decision problems studied since the 1950s in quality control and
other areas. Hay et al. develop a rigorous mathematical framework for metalevel
problems, showing that, for some cases, hard upper bounds can be established for
the number of computations undertaken by an optimal metalevel policy, while, for
other cases, the optimal policy may (with vanishingly small probability) continue
computing long past the point where the cost of computation exceeds the value of
the object-level problem.

Achieving accurate metalevel control remains a difficult open problem in the
general case. Myopic strategies—considering just one computation at a time—can
fail in cases where multiple computations are required to have any chance of altering
the agent’s current preferred action. Obviously, the problem of optimal selection
of computation sequences is at least as intractable as the underlying object-level
problem. One possible approach could be to apply metalevel reinforcement learning,
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especially as the “reward function” for computation—that is, the improvement in
decision quality—is easily available to the metalevel post hoc. It seems plausible
that the human brain has such a capacity, since its hardware is unlikely to have a
method of deriving clever new algorithms for new classes of decision problems.
Indeed, there is a sense in which algorithms are not a necessary part of Al
systems. Instead, one can imagine a general, adaptive process of rationally guided
computation interacting with properties of the environment to produce more and
more efficient decision making.

Although rational metareasoning seems to be a useful tool in coping with
complexity, the concept of metalevel rationality as a formal framework for resource-
bounded agents does not seem to hold water. The reason is that, since metareasoning
is expensive, it cannot be carried out optimally. Thus, while a metalevel-rational
agent would be highly desirable (although not quite as desirable as a perfectly
rational agent), it does not usually exist. The history of object-level rationality has
repeated itself at the metalevel: perfect rationality at the metalevel is unattainable
and calculative rationality at the metalevel is useless. Therefore, a time/optimality
tradeoff has to be made for metalevel computations, as for example with the myopic
approximation mentioned above. Within the framework of metalevel rationality,
however, there is no way to identify the appropriate tradeoff of time for metalevel
decision quality. Any attempt to do so via a metametalevel simply results in a
conceptual regress. Furthermore, it is entirely possible that in some environments,
the most effective agent design will do no metareasoning at all, but will simply
respond to circumstances. These considerations suggest that the right approach is
to step outside the agent, as it were; to refrain from micromanaging the individual
decisions made by the agent. This is the approach taken in bounded optimality.

2.6 Bounded Optimality

The difficulties with perfect rationality and metalevel rationality arise from the
imposition of optimality constraints on actions or computations, neither of which
the agent designer directly controls. The basic problem is that not all agent functions
are feasible (Russell and Subramanian 1995) on a given machine M; the feasible
functions are those implemented by some program for M. Thus, the optimization
over functions in Eq. (2.1) is meaningless. It may be pointed out that not all agent
functions are computable, but feasibility is in fact much stricter than computability,
because it relates the operation of a program on a formal machine model with finite
speed to the actual temporal behaviour generated by the agent.

Given this view, one is led immediately to the idea that optimal feasible behaviour
is an interesting notion, and to the idea of finding the program that generates it. Py,
bounded optimality, is exhibited by a program /oy that satisfies

lopr = argmaxc o, V(Agent(l,M),E, U). 2.2)
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Certainly, one would be happy to have Iy, which is as intelligent as possible given
the computational resources and structural constraints of the machine M. Certainly,
bounded optimal programs exist, by definition. And the research agenda appears to
be very interesting, even though it is difficult.

In AlI, the idea of bounded optimality floated around among several discussion
groups interested in resource-bounded rationality in the late 1980s, particularly
those at Rockwell (organized by Michael Fehling) and Stanford (organized by
Michael Bratman). The term itself seems to have been originated by Horvitz (1989),
who defined it informally as “the optimization of computational utility given a set
of assumptions about expected problems and constraints on resources.”

Similar ideas also emerged in game theory, where there has been a shift from
consideration of optimal decisions in games to a consideration of optimal decision-
making programs. This leads to different results because it limits the ability of each
agent to do unlimited simulation of the other, who is also doing unlimited simulation
of the first, and so on. Depending on the precise machine limitations chosen, it is
possible to prove, for example, that the iterated Prisoner’s Dilemma has cooperative
equilibria (Megiddo and Wigderson 1986; Papadimitriou and Yannakakis 1994;
Tennenholtz 2004), which is not the case for arbitrary strategies.

Philosophy has also seen a gradual evolution in the definition of rationality.
There has been a shift from consideration of act utilitarianism—the rationality
of individual acts—to rule utilitarianism, or the rationality of general policies for
acting. The requirement that policies be feasible for limited agents was discussed
extensively by Cherniak (1986) and Harman (1983). A philosophical proposal
generally consistent with the notion of bounded optimality can be found in the
“Moral First Aid Manual” (Dennett 1988). Dennett explicitly discusses the idea
of reaching an optimum within the space of feasible decision procedures, using as
an example the Ph.D. admissions procedure of a philosophy department. He points
out that the bounded optimal admissions procedure may be somewhat messy and
may have no obvious hallmark of “optimality”—in fact, the admissions committee
may continue to tinker with it since bounded optimal systems may have no way to
recognize their own bounded optimality.

My work with Devika Subramanian placed the general idea of bounded optimal-
ity in a formal setting and derived the first rigorous results on bounded optimal
programs (Russell and Subramanian 1995). This required setting up completely
specified relationships among agents, programs, machines, environments, and time.
We found this to be a very valuable exercise in itself. For example, the informal
notions of “real-time environments” and “deadlines” ended up with definitions
rather different than those we had initially imagined. From this foundation, a very
simple machine architecture was investigated in which the program consists of a
collection of decision procedures with fixed execution time and decision quality.
In a “stochastic deadline” environment, it turns out that the utility attained by
running several procedures in sequence until interrupted is often higher than that
attainable by any single decision procedure. That is, it is often better first to prepare
a “quick and dirty” answer before embarking on more involved calculations in case
the latter do not finish in time. In an entirely separate line of inquiry, Livnat and
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Pippenger (2006) show that, under a bound on the total number of gates in a circuit-
based agent, the bounded optimal configuration may, for some task environments,
involve two or more separate circuits that compete for control of the effectors and,
in essence, pursue separate goals.

The interesting aspect of these results, beyond their value as a demonstration
of nontrivial proofs of bounded optimality, is that they exhibit in a simple way
what I believe to be a major feature of bounded optimal agents: the fact that
the pressure towards optimality within a finite machine results in more complex
program structures. Intuitively, efficient decision-making in a complex environment
requires a software architecture that offers a wide variety of possible computational
options, so that in most situations the agent has at least some computations available
that provide a significant increase in decision quality.

One objection to the basic model of bounded optimality outlined above is that
solutions are not robust with respect to small variations in the environment or
the machine. This in turn would lead to difficulties in analyzing complex system
designs. Theoretical computer science faced the same problem in describing the
running time of algorithms, because counting steps and describing instruction
sets exactly gives the same kind of fragile results on optimal algorithms. The
O() notation was developed to provide a way to describe complexity that is
independent of machine speeds and implementation details and that supports the
cumulative development of complexity results. The corresponding notion for agents
is asymptotic bounded optimality (ABO) (Russell and Subramanian 1995). As with
classical complexity, we can define both average-case and worst-case ABO, where
“case” here means the environment. For example, worst-case ABO is defined as
follows:

Worst-case asymptotic bounded optimality
an agent program [ is timewise (or spacewise) worst-case ABO in E on M

iff

Jk,no YI',n n > ng = V*(Agent(l,kM),E, U, n) >
V*(Agent(I',M),E, U, n)

where kM denotes a version of M speeded up by a factor k (or with
k times more memory) and V*(f,E,U,n) is the minimum value of
V(f,E, U) for all E in E of complexity n.

In English, this means that the program is basically along the right lines if it just
needs a faster (larger) machine to have worst-case behaviour as good as that of any
other program in all environments.

Another possible objection to the idea of bounded optimality is that it simply
shifts the intractable computational burden of metalevel rationality from the agent’s
metalevel to the designer’s object level. Surely, one might argue, the designer now
has to solve offline all the metalevel optimization problems that were intractable
when online. This argument is not without merit—indeed, it would be surprising
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if the agent design problem turns out to be easy. There is however, a significant
difference between the two problems, in that the agent designer is presumably
creating an agent for an entire class of environments, whereas the putative metalevel
agent is working in a specific environment. That this can make the problem easier
for the designer can be seen by considering the example of sorting algorithms. It may
be very difficult indeed to sort a list of a trillion elements, but it is relatively easy to
design an asymptotically optimal algorithm for sorting. In fact, the difficulties of the
two tasks are unrelated. The unrelatedness would still hold for BO as well as ABO
design, but the ABO definitions make it a good deal clearer.

It can be shown easily that worst-case ABO is a generalization of asymptot-
ically optimal algorithms, simply by constructing a “classical environment” in
which classical algorithms operate and in which the utility of the algorithm’s
behaviour is a decreasing positive function of runtime if the output is correct
and zero otherwise. Agents in more general environments may need to trade off
output quality for time, generate multiple outputs over time, and so on. As an
illustration of how ABO is a useful abstraction, one can show that under certain
restrictions one can construct universal ABO programs that are ABO for any time
variation in the utility function, using the doubling construction from Russell and
Zilberstein (1991). Further directions for bounded optimality research are discussed
below.

2.7 What Is to Be Done?

The 1997 version of this paper described two agendas for research: one agenda
extending the tradition of calculative rationality and another dealing with metarea-
soning and bounded optimality.

2.7.1 Improving the Calculative Toolbox

The traditional agenda took as its starting point the kind of agent could be built
using the components available at that time: a dynamic Bayesian network to model
a partially observable, stochastic environment; parametric learning algorithms to
improve the model; a particle filtering algorithm to keep track of the environment
state; reinforcement learning to improve the decision function given the state
estimate. Such an architecture “breaks” in several ways when faced with the
complexity of real-world environments (Russell 1998):

1. Dynamic Bayesian networks are not expressive enough to handle environments
with many related objects and uncertainty about the existence and identity of
objects; a more expressive language—essentially a unification of probability and
first-order logic—is required.
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2. A flat space of primitive action choices, especially when coupled with a greedy
decision function based on reinforcement learning, cannot handle environments
where the relevant time scales are much longer than the duration of a single
primitive action. (For example, a human lifetime involves tens of trillions
of primitive muscle activation cycles.) The agent architecture must support
hierarchical representations of behaviour, including high-level actions over long
time scales.

3. Attempting to learn a value function accurate enough to support a greedy one-
step decision procedure is unlikely to work; the decision function must support
model-based lookahead over a hierarchical action model.

On this traditional agenda, a great deal of progress has occurred. For the first item,
there are declarative (Milch et al. 2005) and procedural (Pfeffer 2001; Goodman
et al. 2008) probabilistic programming languages that have the required expressive
power. For the second item, a theory of hierarchical reinforcement learning has been
developed (Sutton et al. 1999; Parr and Russell 1998). The theory can be applied to
agent architectures defined by arbitrary partial programs—that is, agent programs
in which the choice of action at any point may be left unspecified (Andre and
Russell 2002; Marthi et al. 2005). The hierarchical reinforcement learning process
converges in the limit to the optimal completion of the agent program, allowing the
effective learning of complex behaviours that cover relatively long time scales. For
the third item, lookahead over long time scales, a satisfactory semantics has been
defined for high-level actions, at least in the deterministic setting, enabling model-
based lookahead at multiple levels of abstraction (Marthi et al. 2008).

These are promising steps, but many problems remain unsolved. From a practical
point of view, inference algorithms for expressive probabilistic languages remain far
too slow, although this is the subject of intense study at present in many research
groups around the world. Furthermore, algorithms capable of learning new model
structures in such languages are in their infancy. The same is true for algorithms
that construct new hierarchical behaviours from more primitive actions: it seems
inevitable that intelligent systems will need high-level actions, but as yet we do not
know how to create new ones automatically. Finally, there have been few efforts at
integrating these new technologies into a single agent architecture. No doubt such
an attempt will reveal new places where our ideas break and need to be replaced
with better ones.

2.7.2 Optimizing Computational Behaviour

A pessimistic view of Eq. (2.2) is that it requires evaluating every possible program
in order to find one that works best—hardly the most promising or original strategy
for Al research. But in fact the problem has a good deal of structure and it is possible
to prove bounded optimality results for reasonably general classes of machines and
task environments.
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Modular design using a hierarchy of components is commonly seen as the only
way to build reliable complex systems. The components fulfill certain behavioural
specifications and interact in well-defined ways. To produce a composite bounded-
optimal design, the optimization problem involves allocating execution time to
components (Zilberstein and Russell 1996) or arranging the order of execution of
the components (Russell and Subramanian 1995) to maximize overall performance.
As illustrated earlier in the discussion of universal ABO algorithms, the techniques
for optimizing temporal behaviour are largely orthogonal to the content of the
system components, which can therefore be optimized separately. Consider, for
example, a composite system that uses an anytime inference algorithm over a
Bayesian network as one of its components. If a learning algorithm improves
the accuracy of the Bayesian network, the performance profile of the inference
component will improve, which will result in a reallocation of execution time that
is guaranteed to improve overall system performance. Thus, techniques such as the
doubling construction and the time allocation algorithm of Zilberstein and Russell
(1996) can be seen as domain-independent tools for agent design. They enable
bounded optimality results that do not depend on the specific temporal aspects of
the environment class. As a simple example, we might prove that a certain chess
program design is ABO for all time controls ranging from blitz to full tournament
play.

The results obtained so far for optimal time allocation have assumed a static,
offline optimization process with predictable component performance profiles and
fixed connections among components. One can imagine far more subtle designs in
which individual components must deal with unexpectedly slow or fast progress in
computations and with changing needs for information from other components. This
might involve exchanging computational resources among components, establishing
new interfaces, and so on. This is more reminiscent of a computational market,
as envisaged by Wellman (1994), than of the classical subroutine hierarchies, and
would offer a useful additional level of abstraction in system design.

2.7.3 Learning and Bounded Optimality

In addition to combinatorial optimization of the structure and temporal behaviour of
an agent, we can also use learning methods to improve the design:

* The content of an agent’s knowledge base can of course be improved by inductive
learning. Russell and Subramanian (1995) show that approximately bounded
optimal designs can be guaranteed with high probability if each component
is learned in such a way that its output quality is close to optimal among
all components of a given execution time. Results from statistical learning
theory, particularly in the agnostic learning and empirical risk minimization
models (Kearns et al. 1992; Vapnik 2000), can provide learning methods—such
as support vector machines—with the required properties. The key additional
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step is to analyze the way in which slight imperfection in each component carries
through to slight imperfection in the whole agent.

* Reinforcement learning can be used to learn value information such as utility
functions, and several kinds of €-6 convergence guarantees have been established
for such algorithms. Applied in the right way to the metalevel decision problem,
a reinforcement learning process can be shown to converge to a bounded-optimal
configuration of the overall agent.

* Compilation methods such as explanation-based learning can be used to trans-
form an agent’s representations to allow faster decision making. Several agent
architectures including SOAR (Laird et al. 1986) use compilation to speed up
all forms of problem solving. Some nontrivial results on convergence have been
obtained by Tadepalli (1991), based on the observation that after a given amount
of experience, novel problems for which no solution has been stored should be
encountered only infrequently.

Presumably, an agent architecture can incorporate all these learning mechanisms.
One of the issues to be faced by bounded optimality research is how to prove
convergence results when several adaptation and optimization mechanisms are
operating simultaneously.

2.7.4 Offline and Online Mechanisms

One can distinguish between offline and online mechanisms for constructing
bounded-optimal agents. An offline construction mechanism is not itself part of the
agent and is not the subject of bounded optimality constraints. Let C be an offline
mechanism designed for a class of environments E. Then a typical theorem will say
that C operates in a specific environment £ € E and returns an agent design that is
ABO (say) for E—that is, an environment-specific agent.

In the online case, the mechanism C is considered part of the agent. Then a typical
theorem will say that the agent is ABO for all E € E. If the performance measure
used is indifferent to the transient cost of the adaptation or optimization mechanism,
the two types of theorems are essentially the same. On the other hand, if the cost
cannot be ignored—for example, if an agent that learns quickly is to be preferred to
an agent that reaches the same level of performance but learns more slowly—then
the analysis becomes more difficult. It may become necessary to define asymptotic
equivalence for “experience efficiency” in order to obtain robust results, as is done
in computational learning theory.

It is worth noting that one can easily prove the value of “lifelong learning” in
the ABO framework. An agent that devotes a constant fraction of its computational
resources to learning-while-doing cannot do worse, in the ABO sense, than an agent
that ceases learning after some point. If some improvement is still possible, the
lifelong learning agent will always be preferred.
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2.7.4.1 Fixed and Variable Computation Costs

Another dimension of design space emerges when one considers the computational
cost of the “variable part” of the agent design. The design problem is simplified
considerably when the cost is fixed. Consider again the task of metalevel reinforce-
ment learning, and to make things concrete let the metalevel decision be made
by a Q function mapping from computational state and action to value. Suppose
further that the Q function is to be represented by a neural net. If the topology
of the neural net is fixed, then all Q functions in the space have the same execution
time. Consequently, the optimality criterion used by the standard Q-learning process
coincides with bounded optimality, and the equilibrium reached will be a bounded-
optimal configuration.! On the other hand, if the topology of the network is subject
to alteration as the design space is explored, then the execution time of the different
Q-functions varies. In this case, the standard Q-learning process will not necessarily
converge to a bounded-optimal configuration; typically, it will tend to build larger
and larger (and therefore more and more computationally expensive) networks to
obtain a more accurate approximation to the true Q-function. A different adaptation
mechanism must be found that takes into account the passage of time and its effect
on utility.

Whatever the solution to this problem turns out to be, the important point is that
the notion of bounded optimality helps to distinguish adaptation mechanisms that
will result in good performance from those that will not. Adaptation mechanisms
derived from calculative rationality will fail in the more realistic setting where an
agent cannot afford to aim for perfection.

2.7.5 Looking Further Ahead

The discussion so far has been limited to fairly sedate forms of agent architecture
in which the scope for adaptation is circumscribed to particular functional aspects
such as metalevel Q functions. However, an agent must in general deal with an
environment that is far more complex than itself and that exhibits variation over time
at all levels of granularity. Limits on the size of the agent’s memory may imply that
almost complete revision of the agent’s mental structure is needed to achieve high
performance. (For example, songbirds grow their brains substantially during the
singing season and shrink them again when the season is over.) Such situations may
engender a rethinking of some of our notions of agent architecture and optimality,
and suggest a view of agent programs as dynamical systems with various amounts of
compiled and uncompiled knowledge and internal processes of inductive learning,
forgetting, and compilation.

'A similar observation was made by Horvitz and Breese (1990) for cases where the object level is
so restricted that the metalevel decision problem can be solved in constant time.
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If a true science of intelligent agent design is to emerge, it will have to operate
in the framework of bounded optimality. One general approach—discernible in the
examples given earlier—is to divide up the space of agent designs into “architectural
classes” such that in each class the structural variation is sufficiently limited. Then
ABO results can be obtained either by analytical optimization within the class or
by showing that an empirical adaptation process results in an approximately ABO
design. Once this is done, it should be possible to compare architecture classes
directly, perhaps to establish asymptotic dominance of one class over another. For
example, it might be the case that the inclusion of an appropriate “macro-operator
formation” or “greedy metareasoning” capability in a given architecture will result
in an improvement in behaviour in the limit of very complex environments—that is,
one cannot compensate for the exclusion of the capability by increasing the machine
speed by a constant factor. Moreover, within any particular architectural class it is
clear that faster processors and larger memories lead to dominance. A central tool
in such work will be the use of “no-cost” results where, for example, the allocation
of a constant fraction of computational resources to learning or metareasoning can
do no harm to an agent’s ABO prospects.

Getting all these architectural devices to work together smoothly is an important
unsolved problem in Al and must be addressed before we can make progress on
understanding bounded optimality within these more complex architectural classes.
If the notion of “architectural device” can be made sufficiently concrete, then Al
may eventually develop a grammar for agent designs, describing the devices and
their interrelations. As the grammar develops, so should the accompanying ABO
dominance results.

2.8 Summary

I have outlined some directions for formally grounded AI research based on
bounded optimality as the desired property of Al systems. This perspective on Al
seems to be a logical consequence of the inevitable philosophical “move” from
optimization over actions or computations to optimization over programs. I have
suggested that such an approach should allow synergy between theoretical and
practical Al research of a kind not afforded by other formal frameworks. In the
same vein, I believe it is a satisfactory formal counterpart of the informal goal
of creating intelligence. In particular, it is entirely consistent with our intuitions
about the need for complex structure in real intelligent agents, the importance of the
resource limitations faced by relatively tiny minds in large worlds, and the operation
of evolution as a design optimization process. One can also argue that bounded
optimality research is likely to satisfy better the needs of those who wish to emulate
human intelligence, because it takes into account the limitations on computational
resources that are presumably an important factor in the way human minds are
structured and in the behaviour that results.
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Bounded optimality and its asymptotic version are, of course, nothing but
formally defined properties that one may want systems to satisfy. It is too early to tell
whether ABO will do the same kind of work for Al that asymptotic complexity has
done for theoretical computer science. Creativity in design is still the prerogative
of Al researchers. It may, however be possible to systematize the design process
somewhat and to automate the process of adapting a system to its computational
resources and the demands of the environment. The concept of bounded optimality
provides a way to make sure the adaptation process is “correct.”

My hope is that with these kinds of investigations, it will eventually be possible
to develop the conceptual and mathematical tools to answer some basic questions
about intelligence. For example, why do complex intelligent systems (appear to)
have declarative knowledge structures over which they reason explicitly? This
has been a fundamental assumption that distinguishes Al from other disciplines
for agent design, yet the answer is still unknown. Indeed, Rod Brooks, Hubert
Dreyfus, and others flatly deny the assumption. What is clear is that it will
need something like a theory of bounded optimal agent design to answer this
question.

Most of the agent design features that I have discussed here, including the use
of declarative knowledge, have been conceived within the standard methodology
of “first build calculatively rational agents and then speed them up.” Yet one
can legitimately doubt that this methodology will enable the Al community to
discover all the design features needed for general intelligence. The reason is that
no conceivable computer will ever be remotely close to approximating perfect
rationality for even moderately complex environments. It may well be the case,
therefore, that agents based on approximations to calculatively rational designs are
not even close to achieving the level of performance that is potentially achievable
given the underlying computational resources. For this reason, I believe it is
imperative not to dismiss ideas for agent designs that do not seem at first glance
to fit into the “classical” calculatively rational framework.
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Chapter 3
Computation and Multiple Realizability

Marcin Mitkowski

Abstract Multiple realizability (MR) is traditionally conceived of as the feature of
computational systems, and has been used to argue for irreducibility of higher-level
theories. I will show that there are several ways a computational system may be
seen to display MR. These ways correspond to (at least) five ways one can conceive
of the function of the physical computational system. However, they do not match
common intuitions about MR. I show that MR is deeply interest-related, and for
this reason, difficult to pin down exactly. I claim that MR is of little importance for
defending computationalism, and argue that it should rather appeal to organizational
invariance or substrate neutrality of computation, which are much more intuitive but
cannot support strong antireductionist arguments.

Keywords Multiple realizability * Functionalism ¢ Computationalism

I want to undermine the conviction that multiple realizability (MR) is particularly
important in understanding the nature of computational systems. MR is held to be
fundamental as far as it is considered indispensable in arguing for irreducibility of
theories that appeal to the notion of computation. This is why this conviction is
especially common among proponents of antireductionism who want to defend the
autonomy of psychology (for example, (Block 1990, p. 146)), even if it’s not so
important for theorists of computability, if not completely alien to them.!

Recently, it was also argued that mechanistic theories of physical computation
(Piccinini 2007, 2010) were not compatible with multiple realization (Haimovici
2013), which was supposed to show that mechanism is wrong. Indeed, in defending
my mechanistic account of computation, I denied that multiple realization is an
essential feature of computation, and that there are no facts of the matter that could
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easily establish that a given computational capacity is actually multiply realized or
not (Mitkowski 2013, Chap. 2). I want to develop this point in detail here and show
that there are multiple ways of carving the computational capacity but whenever it
is made precise, there are either too many examples of MR or scarcely any in cases
that have been considered paradigmatic. For this reason, it does not seem to be an
essential feature at all; I suggest that it can be easily replaced with another similar
feature of organizational invariance or substrate neutrality.

The organization of the paper is as follows. First, I introduce the notion of MR,
and show it is quite vague. I argue for additional restrictions on the notion to make it
more precise. Then, I analyze one vivid example from the history of computing. In
the following discussion, I distinguish MR from substrate neutrality and suggest that
the latter is indeed more important. At the same time, substrate neutrality does not
lend credibility to antireductionist arguments, and remains compatible with type-
identity theory.

3.1 Multiple Realization Introduced, Criticized, and Made
More Precise

The argument from multiple realizability to irreducibility is usually attributed to
Jerry Fodor (1974) and to Hilary Putnam (1975). Elliot Sober summarizes the
argument in the following way:

1. Higher-level sciences describe properties that are multiply realizable and that provide
good explanations.

2. If a property described in a higher-level science is multiply realizable at a lower level,
then the lower-level science will not be able to explain, or will explain only feebly, the
phenomena that the higher-level science explains well.

3. If higher-level sciences provide good explanations of phenomena that lower-level
sciences cannot explain, or explain only feebly, then reductionism is false.

Reductionism is false. (Sober 1999, p. 558)

However, it needs to be noted that neither Fodor nor Putnam uses the term
“multiple realization” or its cognates. In the subsequent discussion, it was used
mostly informally, usually without a definition but with the help of Fodor’s example:
money. Money can be realized as coins, banknotes, credit cards, sea shells, and what
not. There is simply no physical kind that encompasses all realizations of money,
Fodor claims, and the lower-level, physical description of the bearers of monetary
value is bound to be wildly disjunctive (Fodor 1974). The same is supposed to
happen with realizations of computer algorithms, but not simply because they are
cultural entities, like money: it has been claimed that one can make a computer
of silicon chips, but also of toilet paper or Swiss cheese, and they would realize
the same algorithm and be different realizations. Simply speaking, a functional
capacity is multiply realized if and only if its occurrence is owing to different
realizing structures. But this initial definition remains fairly vague; it does not
decide whether anything else but functional capacities is multiply realized; it also
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does not set any standards on when functional capacities count as exactly of the
same type, and what the standards for sameness of realizers are. It turns out that
making the notion precise is extremely difficult. In addition, according to Keeley
(2000), neuroethology uses both behavioral evidence and physiological evidence
to justify its claims; and MR might be compatible with reductionism after all. But
whether the reductionism is correct or not is not the question I am interested in this
paper.

It’s fair to say that after initial enthusiasm, philosophers have become much more
skeptical about MR, and many argue that it need not be so frequent or essential.
For example (Bechtel and Mundale 1999) argued that, contrary to appearances,
different brains were at least sometimes viewed as exactly the same realizers of a
given psychological capacity: Neuroscience frequently uses animal brains as models
of the human brain, and there would be no animal models for human brains if
animal brains were actually so wildly different as antireductionists suppose. For
example, the rat’s brain is not really a different realization of dopamine-related
capacities when it uses dopamine. Just like Bechtel and Mundale, Polger (2004,
2008) and Shapiro (2000, 2004) consequently argued that there might be merely
illusory MR in cases where the function has been described in a generic way and
its realization quite specifically. Just as different colors of a corkscrew do not make
them different physical realizations (after all, the color is irrelevant to the function
of the corkscrew), not all specific details count when it comes to distinguishing
different realizations. But even not all causally relevant detail is equally important:
for example, for opening a wine bottle, one could easily use a corkscrew with
five or four threads on their screws. There is a certain level of changes that we
usually consider irrelevant (in the engineering contexts, one speaks of tolerance
levels). What makes an amount of possible differences irrelevant? Are there any
principled answers to this question? Before I go on, an important caveat is in
place.

Some would deny that corkscrews are ever multiply realized. First, they are
artifacts, and some deny functional status to artifacts or claim that artifacts only have
functionality derived from the functions of their biological users (Davies 2001).
Here, I will assume that derived functions are equally functional so as not to beg the
question against the proponents of MR with respect to computation. Second, and
more importantly, functional capacities of corkscrews and properties of realizations
of their capacities to open bottles might be both ascribed simply to corkscrews,
rather than parts of corkscrews. That leads to a general question. Is it possible
for a functional capacity to be a property of the same entity as the properties of
the realizers? A positive answer is the so-called ‘standard’, or ‘flat’ view on MR,
whereas the ‘dimensioned view’ stresses that instances of properties of realizers
are not the properties of the same entity, which introduces more ‘dimensions’ to the
definition of MR (Aizawa and Gillett 2009; Gillett 2002). The dimensioned view has
its roots in the functionalist tradition: Cummins’ (1975) conditions for functional
analysis require that functional capacities be ascribed to higher-level structures, and
their realizing structures be on the lower-level; thus on the dimensioned view, MR
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is an ontological inter-level relationship. The defenders of the flat view have argued,
however, that the dimensioned view leads to absurdity (Polger and Shapiro 2008).
My point in this paper is however largely independent from this debate (but for a
reply, see (Gillett 2011)), and the main problem for MR of computation is essentially
the same for both dimensioned and flat views. In what follows, I will still peruse
the simple example of corkscrews; if you subscribe to the dimensioned view, there
is always a paraphrase of my claims in terms of the operations and parts of the
corkscrew rather in terms of the operation of the corkscrew itself.

Let me return to the core of the problem with MR. My initial definition is vague,
and we need to have strict standards of sameness and difference to show that MR
actually occurs, and these standards cannot beg the question against reductionism.
But other definitions currently espoused by defenders of MR do not seem to fare
any better. For example:

(Multiple Realization) A property G is multiply realized if and only if (i) under condition
$, an individual s has an instance of property G in virtue of the powers contributed by
instances of properties/relations F; -F, to s, or s’s constituents, but not vice versa; (ii) under
condition $* (which may or may not be identical to $), an individual s* (which may or may
not be identical to s) has an instance of a property G in virtue of the powers contributed by
instances of properties/relations F*; -F*,; to s* or s*’s constituents, but not vice versa; (iii)
Fi -F, # F*-F*, and (iv), under conditions $ and $*, F; -F, and F*; -F*, are at the same
scientific level of properties (Aizawa and Gillett 2009, p. 188).

According to (iii), we need to make sure that properties or relations are different
in different realizers. But what are the standards, again? The ascription of function
should be as fine-grained as the description of the function realization. However, the
notion of function is inextricably linked with theoretical interests of the observer,
thus MR is also heavily interest-dependent. (Note: even if there are proposals to
make the function ascriptions as determinate as possible, they usually pertain only
to the so-called notion of etiological notion of function, cf. (Price 2001); for MR,
however, the relevant notion is systemic or dispositional, as defined by Cummins
(1975), and this notion is interest-dependent.) It does not mean that there are
absolutely no facts of the matter in function ascriptions, as ascriptions may fail to
be true; but they are still interest-driven (Craver 2013).

So how could one decide when the functional capacity is the same, and when
it is not? Is there any evidence one could use? For example, Shagrir noted that
the evidence for the sameness of the psychological capacities in the case of neuro-
plasticity — or, more importantly, in case of realizing computational algorithms — is
not really available for antireductionists, as all that they have is a set of “behavioral
antecedents and consequences of subjects, and physical realizations of the mediating
computational mechanisms” (Shagrir 1998). This kind of evidence simply cannot
settle the question at all. For this reason, an important topic in the debate has become
the question of how to evaluate claims for MR (Polger 2008; Shapiro 2008).

So how can we evaluate the claim that a given computational algorithm or a
computational system has multiple realizations? Here are possible answers. I will
argue that in interesting cases — the ones usually held to be paradigmatic — there’s
no MR, contrary to appearances.
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3.2 When Are Computations Multiply Realized?

Let me pick a particularly vivid example of two compatible IBM computers, 709
and 7090, one with tubes, and another with transistors. It seems to be ideally suited
to test the claim whether one can fruitfully talk of multiple realization in the case of
computational systems. In addition, some authors have earlier considered two IBMs
to be realizations of the same computational system (Wimsatt 2002), and I have
argued earlier that it is not necessarily the case (Mitkowski 2013). (IBM 7090 was
also featured in Dr. Strangelove, which should be a good enough reason to consider
it worthy of philosophical attention.)

IBM 709 and IBM 7090 share the same logical diagram (as witnessed by their
technical documentation) but they use different electronics. Transistors work faster
than tubes, so they differ also with their speed of operation. They have obviously
different footprint, as transistors are smaller: the newer version is 50 % smaller,
and needs less ventilation because transistors need less cooling. Transistors also
consume 70 % less power, while tubes are 6 times slower. There’s no denying that
these machine differ; they also share a lot (for more technical specifications and
photos, see (“IBM Archives: 709 Data Processing System,” 2003, “IBM Archives:
7090 Data Processing System,” 2003)). But is there MR in the strict meaning of the
term?

To make MR claims about computational precise, one has to explain what it
is to have a computational function. I can enumerate at least five ways one can
understand the computational capacity of a given computer. I will explain these in
turn but before I do so, I need to briefly introduce my mechanistic framework that
allows talking about physical — or implemented — computation. One of the most
widely endorsed views in the philosophy of special sciences is neo-mechanism
(Bechtel 2008; Craver 2007; Machamer et al. 2000). According to this view,
to explain a phenomenon is to explain the underlying mechanism. Mechanistic
explanation is causal explanation, and explaining a mechanism involves describing
its causal structure. While mechanisms are defined in various ways by different
authors, the core idea is that they are organized systems, comprising causally
relevant component parts and operations (or activities) thereof. Components of the
mechanism interact and their orchestrated operation contributes to the capacity of
the mechanism.

A mechanism implements a computation just when the causal organization of
the mechanism is such that the input and output information streams are causally
linked and that this link, along with the specific structure of information processing,
is completely described (the notion of information is not semantic in my account;
for a similar treatment, see (Fresco 2014)). Importantly, the link can be cyclical and
as complex as one could wish. Mechanistic constitutive explanation, usually used
to explain physical computation in cases where we deem physical implementation
important, includes at least three levels of the mechanism: a constitutive (—1) level,
which is the lowest level in the given analysis; an isolated (0) level, at which the
parts of the mechanism are specified along with their interactions (activities or
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operations); and the contextual (41) level, at which the function of the mechanism
is seen in a broader context. These levels are not just levels of abstraction; they are
levels of composition or organization.

The description of a mechanistically adequate model of computation comprises
two parts: (1) an abstract specification of a computation, which should include all
the variables causally relevant for the computation; (2) a complete blueprint of the
mechanism on three levels of its organization. I call the first part the formal model
of the mechanism and the second the instantiation blueprint of the mechanism (for
a detailed study of how this framework is applied to physical and non-conventional
computers, such as Physarum machines, see (Mitkowski 2014)).

After this brief introduction of terminology, I can enumerate five possible ways
of understanding the capacity of the computational mechanism. First, the computers
could share the same causal structure associated with their formal model and differ
in their instantiation blueprint (let’s call it formal-model MR). Now, how much
do they have to differ? Arguably, one could say that a certain level of tolerance
for physical changes is required; otherwise, simple physical wear and tear or
replacement of worn parts would be enough to say that a computer is now a new
realization of its older version (this is a new version of the ancient puzzle regarding
the ship of Theseus). This is why only physical changes relevant to the execution
of computation should matter; replacing a chip with a faster one would only make
the speed of operation faster by a certain linear factor & (as is usually assumed in
the theory of computational complexity), rather than mean that the computer has an
altogether different substrate.

An emulation of the PowerPC computer on an Intel x86 architecture should qual-
ify as formal-model MR, as they both share the formal model of the computation
(in virtue of emulation on the second one) but the second machine has to include
much more in its formal model, as the emulated machine is just virtual. So the
Intel machine does not really have the same formal model; the formal model of
PowerPC machine is rather a proper part of the complete formal model of the Intel
x86 machine. In other words, these machines literally share the same formal model
but they do not have exactly the same model.

Let me compare this case to what Bechtel and Mundale (1999) consider not to be
an instance of MR. Usually, philosophers assumed that the functionality of the brain
is multiply realized by various anatomies in different species. However, the human
brain topographical map, created by Korbinian Brodman does rely on inter-species
anatomical similarities, or homologies. In other words, anatomical similarity is used
in function ascriptions. Actually, it seems that there are lower-level types that match
higher-level types. The same consideration can be used in the case of my laptop:
the kind of hardware it requires to function properly is specified with a certain level
of tolerance. As long as memory chips, for example, match the specification of
the motherboard, they can be used in my laptop without changing its functionality.
But the similarity in question goes beyond the ability to replace parts; for example,
one cannot replace the part of the human brain with a brain of a rodent and keep
the same functionality. However, there are lower-level, anatomical types that still
match the functionality of the brain in an orderly fashion, so that one can defend a
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kind of type identity between both. It seems therefore cogent that as long as there
is sufficient similarity that allows classifying tokens of the realizing structures as
belonging to the same type we do not have any kind of MR. Actually, the reason for
similarity between brains is homology, or shared ancestry. In the case of IBM 7090,
it is similar to IBM 709 because the latter is its ancestor, and we should expect a lot
of hardware similarities, even if we cannot substitute tubes with transistors directly
(owing to different voltages and so on). For the case of emulation of a PowerPC
on an Intel x86 CPU, the similarity of functionality in question is not caused by
common ancestry but by the software run, so there are no such hardware similarities
we might expect between both IBMs.

One could insist that vast physical differences between IBMs constitute different
types. But there are also vast differences between how both IBMs operate, such
as different speed of operation, which obviously makes difference for the use of
computers, and by supposing that the functional capacity in question is what is
specified just by the formal model of the mechanism, we decided to ignore such
differences as irrelevant, which is an important and far-reaching assumption. Yet
if we use low-grain distinctions for functional types, there is no principled reason
to use fine-grain distinctions for structural types, beside the philosophical prejudice
for MR. They are definitely software-compatible and could run the same FORTRAN
programs.

A second way to understand the computational capacities of computers is to
focus on the mathematical function that they compute, specified in terms of input
and output values (this will be mathematical function MR). This is the level of
computational equivalence usually presupposed in the computability theory: If one
says that a computer C is Turing-machine-equivalent in terms of the set of C-
computable functions, then one presupposes that they will produce the same output
given the same input, whatever the way they compute it. Note however that this is
not the level of grain usually presupposed in cognitive science when it speaks of
computational algorithms realized by brains: in cognitive science, the way which
a given output is produced is immensely important (Fodor 1968; Mitkowski 2011;
Shagrir 1998). For example, reaction times are used as evidence to decide whether
people use this or another algorithm (Meyer et al. 1988; Posner 2005), so algorithms
are individuated with a finer grain in cognitive research.

Is there mathematical function MR for both IBMs? They definitely share the
same mathematical functions (which follows immediately from the fact that they
could use exactly the same software). Again, however, their hardware similarities
make it possible to classify them as the same kind of machine — they aren’t even
realizing different computational architectures. The difference between tubes and
transistors is just as irrelevant as the difference between four and five threads on my
corkscrews.

So how would a cognitive scientist understand a computational capacity of a
system? In this third version, the capacity would also include the features of the
physical implementation, such as the speed of operation; this will be instantiation
blueprint MR. Of course, there is again a certain level of tolerance, so that a mere
replacement of one electronic part does not create another realization of the same
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type. In the case of two IBMs, we have different speeds, as tubes are simply slower.
Of course, the bigger footprint of the tube-based IBM is not so important here (just
like cognitive scientists usually ignore the fact whether subjects are overweight
or not) but there are different patterns of breakdown, which are also important
in neuropsychology, as pathologies are used to make inferences about function
(Glymour 1994). All in all, here even the capacity is different, so there is no chance
for MR to occur.

Between the level of grain implied by mathematical input/output specifications
and the one assumed in cognitive science, one can drive a wedge for another —
fourth — specification. For example, any algorithm for sorting words alphabetically
shares the same input/output relations but not the same sequence of steps, which
is again specifiable in terms of input/output relations. So, one could understand
a particular algorithm for sorting, such as QuickSort, as mathematical function
that is decomposed into an ordered sequence of other more basic mathematical
functions. The kind of MR in this case might be dubbed decomposed mathematical
Sfunction MR. This is how, for example, Keeley seems to understand the algorithm
underlying perceptual abilities of weakly electric fish (he cannot mean the whole
formal model, as in the first meaning of the functional capacity above, because
exact ways that the algorithm is realized are not known). Note however that we
have reason to suppose that there is MR only when fish realize these steps using
sufficiently different hardware that cannot be classified as instantiating the same
kind of operations. Keeley (2000) thinks this is the case for weakly electric fish; but
it does not seem to be the case for IBMs, as their hardware architectures are simply
too similar to imply sufficient changes in lower-level types. They share the same
sequence of mathematical steps but also the same type of hardware architecture,
where tube/transistor difference is not essential to individuating types.

Now, there is yet another, fifth way to think of the computational capacity of
computers, namely in terms of how they are connected to all peripheral devices;
this will be information-flow MR. The pattern of connections is called a “schematic
of data flow” in the original IBM documents, and it describes the connections of
the central processing unit and magnetic core memory with (1) console lights and
switches; (2) cathode ray tube output; (3) magnetic drum storage; (4) and three
data syncronizer [sic!] units, each with connections to optional card readers, card
punches, printers, tape control units, and other “external signal sources”. This way
of looking at the computer makes it basically a node in a network of connections, so
two realizations would be of the same type of node if and only if they share all the
connections. However, if they do, the exact electronic realization of the data flow is
basically as irrelevant as in previous cases.

It seems therefore that different perspectives do not really help to see IBMs as
multiply realizing the same computational kind. Either we end up with a different
computational type for each IBM, as in the instantiation-blueprint MR, or with the
same computational and lower-level types for both.

Note that the so-called dimensioned view of realization (Gillett 2002; Wilson and
Craver 2007) cannot save the MR claim with regard to this example either, as my
argument can be easily rephrased in terms of Cummins-style functional analysis.
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The argument is based on the fact that there has to be the same level of grain in
individuating both high-level and lower-level types; in other words, we consider
lower-level differences to constitute a different type not just in any situation but
only when the differences are in a relevant way connected to the way they realize
higher-level functionality. One could object that this way, there is no way for MR to
occur, but this does not exclude that there are cases of genuine MR. Not at all; the
emulator example serves as an instance of genuine MR. It’s just that MR occurs only
in a very limited number of cases of organizational similarity between computers, so
one cannot say that it is in some way essentially linked to the notion of computation
the way it was earlier presupposed. In other words, the mechanists should really be
skeptical of the role assigned traditionally to MR.

3.3 Organizational Invariance and Substrate Neutrality

At this point, the defenders of MR might still argue that the notion is useful. First,
they might insist that there is yet another way of identifying the computational
capacities of both IBMs. This is of course possible, and I have definitely not
enumerated all possibilities. But I do think that my five options correspond to the
usual ways of thinking about computational types. Still, there might be others; I'm
not holding my breath to get to know them, however, as it’s not so plausible that
they might solve the main problem, which is how to have the same level of grain on
both levels and still retain MR without begging the question against reductionism.

Another possible objection is to deny that only function-relevant lower-level
properties count in identifying the cases of MR. One might bite the bullet and say
that the number of threads and the color of the corkscrew do count as realization-
relevant properties. The number of cases of MR would definitely increase, as any
instance of a type would turn out to be another realization of the type. The question
then becomes: Why introduce the notion of realization when we already have the
notion of the token? It goes against theoretical parsimony.

Of course, one might point out that I didn’t deny that MR is indeed possible
and that there are cases of genuine MR. So a reply from a defender of MR might
go like this: Maybe it is a bit counterintuitive that these IBM computers are not
instances of MR but it’s not so vital. We do have genuine MR, so reductionism is
doomed anyway. However, I think such an answer would be too quick. I haven’t
dealt with the question whether MR really warrants antireductionism (and there
are authors who stress it does not, cf. (Keeley 2000)), so let me put this question
to the side. The intuitive point about MR and computation, one that motivates the
claim that MR is somehow essential to computation, is that MR is always logically
possible for a given computational system. That may be still true, though achieving
MR has a higher price than usually assumed; not only one cannot really make a
complex computer out of Swiss cheese or toilet paper, which has been pointed out
before (Shagrir 1998), but also one needs to find relevant differences of the proper
gain at the lower level. Still, logically this is possible, but no less than creating
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a system that exactly simulates the steps in another computational system; there
are simply multiple ways one could express similarities and equivalences between
computations.

As compared to other precise notions, such as bi-simulation (Malcolm 1996), MR
seems to be particularly vague, and there are no facts of the matter that would help
decide whether MR occurs or not just because individuation the computational type
is inextricably linked to the theoretical interest. This is why the notion needs to be
made precise every time by specifying exactly what is meant by the computational
type that is supposed to be multiply realized.

I grant that MR might also be defined in the way that such constraints on
relevance of realization types and the pragmatic or perspective-bound character
of the notion are gone but I do not really see the point of such an endeavor. The
problem is that the account of MR should both avoid begging the question against
reductionism and not trivialize the notion (by making it effectively as broad as the
notion of the token). I think the prospects of such a project are quite gloomy.

So how can one express the intuitive idea that computation is not really linked
to the physical substrate in the way many other properties are? IBM 709 and 7090
can indeed compute the same mathematical function and share the same abstract
structure of their mechanisms, which is important in explaining and predicting their
work. As purely computational systems, they are exactly the same, and physical
differences are irrelevant, as they make no difference for realization of their capacity
to compute the same set of mathematical functions in the same way (by running
the same software and being compatible to the same set of peripheral devices, and
so forth). For this reason, I suggest that computationalism should rather embrace
the notion of organizational invariance (or substrate neutrality), as both systems
share the same relevant causal topology on one level of their functioning. Note
that under four abovementioned different understanding of computational types (the
one related to the instantiation blueprint is an exception) there is organizational
invariance between the type and both IBMs.

The notion of organizational invariance has been introduced by David Chalmers
(2011) in his theory of physical computation. The notion is defined relative to
the causal topology of a system, which is “the abstract causal organization of the
system: that is, the pattern of interaction among parts of the system, abstracted
away from the make-up of individual parts and from the way the causal connections
are implemented.” (Chalmers 2011, p. 339) A property is organizationally invariant
if it is invariant with respect to the causal topology. In other words, any change
to the system that preserves the topology preserves the organizationally invariant
property. There is a causal topology of two IBMs that both share, and this topology
can be used to define organizationally invariant properties of both. These invariant
properties may involve more than causal topology responsible for the computation,
as they also have other organizational properties related to the way they are
connected to peripheral devices or used in the mainframe lab, for example.

Daniel Dennett’s idea of substrate neutrality is similar to organizational invari-
ance and also related to what is intuitive about computation being independent
(but not entirely!) from the physical instantiation (Dennett 1995, p. 50). Physically
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realized algorithms, according to Dennett, are substrate-neutral in that their causal
power is related to their logical structure rather than to particular features of their
material instantiation. Now, obviously, without physical instantiation they would
not have any causal powers but not all causal powers are relevant for their being
computational. In other words, we may safely abstract away from certain physical
properties as long as the logical causal powers are still retained, or, to express the
same idea in the vocabulary of organizational invariance, as long as the logical
causal topology of the computational system is retained.

The computational structure of two IBMs — considered in any of the five ways
presented in the Sect. 3.2 — can be retained while we change the physical substrate
(in the case of the instantiation blueprint the difference is that IBM 709 does
not share the same computational structure as IBM 7090 but there might be, for
example, clones of IBM 7090 that do). Of course, not any substrate will be suitable,
and because the topology of the whole system has to be retained, one cannot replace
one tube with a transistor, or vice versa. But one can create a hybrid IBM 709’ that
contains a tube-based part and a transistor-based subsystem, as long as one creates
a special interface to retain the causal topology of the original IBM. It would still
run FORTRAN but with more exotic mixture of hardware.

The idea of substrate neutrality or organizational invariance is that there is a
subset of all causal factors in the system which is essential in the system’s compu-
tational capacity. In the mechanistic framework, the organizationally invariant part
is the part responsible for whatever we think is the computational capacity, and one
is free to adopt a certain level of abstraction in specifying the whole mechanism
(Levy and Bechtel 2013). The paraphrase of the intuitive point about MR will be
therefore as follows: The abstract organization of the computational system remains
organizationally invariant, or substrate-neutral with respect to a certain level of
physical changes. IBM 709 and 7090, considered as physical mechanisms, simply
share the same abstract organization, whether it’s conceived of as the formal model
of computation, the set of computable functions, the sequence of some primitive
computable functions, some part of the instantiation blueprint, or the internal and
external connections of the computer.

I suspect that many defenders of MR will retort that what I mean by substrate-
neutrality is exactly what they mean by MR. That well may be, but this is a
conceptual confusion on their part. Substrate-neutrality does not imply that there
is an additional relevant difference between high- and low-level types that somehow
makes cross-level type identification impossible. There is a level of substrate-
neutrality for corkscrews, as long material used to build them is sufficiently stiff
and so forth. Substrate-neutrality will co-occur with MR in some cases but it has
less constraints. Brodman maps do not imply MR but they do imply some substrate-
neutrality, as the latter implies that we abstract from some but not all physical detail
in describing the relevant causal topology. And we do when we compare anatomical
structures for the purposes of topographical mapping.

The acknowledgment of the same abstract organization is not threatened by
adopting a reductive stance; irrespective of whether one treats the organization
as irreducible or not, it will remain causally relevant, and hence, indispensable in
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attaining models of computational mechanisms that are both appropriately general
and include necessary specific details. There is simply no reason for refining
definitions of MR while we can express the point in a simpler manner, and without
begging the question against reductionism. Substrate-neutrality is non-committal,
as it does not exclude type-identity of computational and physical kinds. Granted, if
one is interested in defeating type-identity and reductionism, then it is not attractive,
but it was not my aim to show that computation is not reducible to the physical. To
show that it is (nor not) is a task for another paper, and possibly for another author.
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Chapter 4

When Thinking Never Comes to a Halt: Using
Formal Methods in Making Sure Your Al Gets
the Job Done Good Enough

Tarek R. Besold and Robert Robere

Abstract The recognition that human minds/brains are finite systems with limited
resources for computation has led researchers in cognitive science to advance the
Tractable Cognition thesis: Human cognitive capacities are constrained by computa-
tional tractability. As also human-level Al in its attempt to recreate intelligence and
capacities inspired by the human mind is dealing with finite systems, transferring
this thesis and adapting it accordingly may give rise to insights that can help in
progressing towards meeting the classical goal of Al in creating machines equipped
with capacities rivaling human intelligence. Therefore, we develop the “Tractable
Artificial and General Intelligence Thesis” and corresponding formal models usable
for guiding the development of cognitive systems and models by applying notions
from parameterized complexity theory and hardness of approximation to a general
Al framework. In this chapter we provide an overview of our work, putting special
emphasis on connections and correspondences to the heuristics framework as recent
development within cognitive science and cognitive psychology.
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4.1 Introduction: The Importance of Formal Analysis
for Cognitive Systems Research

After a certain abandonment of the original dream(s) of artificial intelligence (AI)
towards the end of the last century, research in cognitive systems, artificial human-
level intelligence, complex cognition, and integrated intelligent systems over the
last decade has witnessed a revival and is now entering its second spring with
several specifically dedicated conference series, symposia, workshops, journals and
a growing number of books and high-profile research projects. Still, quite some
fundamental questions remain to be answered before a unified approach to solving
the big riddles underlying the (re)creation of human-level intelligence and cognition
may arise. Currently, there are many different paradigms competing with each
other: Symbolism versus connectionism, high-level modeling of specific cognitive
capacities versus low-level models with emergent behavior, holistic versus modular
approaches.

Each of these paradigms brings along its own terminology, conceptual perspec-
tive, and engineering methods, resulting in a wide variety of approaches to solving
the intelligence puzzle. This, in turn, makes it hard to establish standards and
insights in cognitive models and cognitive systems which are valid on a general level
independent of the chosen perspective and methodology. Still, there are a few ele-
ments common to most (if not all) of the mentioned approaches (in that, for instance,
they are applied in attempts to model one or several human cognitive capacities),
making the wish for general principles and results more urgent. Here, formal
methods and analyses can provide a solution: Due to their general nature they can
often be applied without prior commitment to a particular formalism or architecture,
allowing to establish high-level insights and generally applicable findings. In other
words, these techniques can provide guidelines and hints at how to unify approaches
and progress towards the overall goals of the respective research programs.

In what follows, we give an overview of the status quo of our work on the
topic, combining previous independently published contributions and extending the
individual pieces into a unified whole. This summary shall provide both evidence
supporting the just made claims about the possible role of formal methods for
general high-level Al design, and concrete insights concerning heuristics and their
use in cognitive systems as important specific example. Section 4.2 introduces the
mindset underlying our work before Sect.4.3 summarizes important theoretical
results, followed by a worked application case for our approach in Sect. 4.4. Opening
the second half of the chapter, Sect. 4.5 then elaborates the connection between the
notion of cognitive heuristics (and their models) to recent results from parameterized
complexity and the theory of hardness of approximation, before Sect. 4.6 addresses
some of the most common criticisms targeting the application of formal methods to
work in Al and cognitive systems. Section 4.7 concludes the chapter, connecting
it to related work by other scholars and pointing out some future directions of
development.
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4.2 Complexity and Cognition

Two famous ideas conceptually lie at the heart of many endeavors in computational
cognitive modeling, cognitive systems research and artificial intelligence: The
“computer metaphor” of the mind, i.e. the concept of a computational theory of
mind as described in Pylyshyn (1980), and the Church-Turing thesis (a familiar
version of which is stated in Turing 1969). The former bridges the gap between
humans and computers by advocating the claim that the human mind and brain
can be seen as an information processing system and that reasoning and thinking
correspond to processes that meet the technical definition of computation as formal
symbol manipulation, the latter gives an account of the nature and limitations of
the computational power of such a system: Every function for which there is an
algorithm (i.e., those functions which are “intuitively computable” by a sequence of
steps) is computable by a Turing machine—and functions that are not computable
by such a machine are to be considered not computable in principle by any machine.

But the “computer metaphor” and the Church-Turing thesis also had significant
impact on cognitive science and cognitive psychology. As stated in Cummins
(2000), one of the primary aims of cognitive psychology is to explain human
cognitive capacities—which are often modeled in terms of computational-level
theories of cognitive processes (i.e., as precise characterizations of the hypothesized
inputs and outputs of the respective capacities together with the functional mappings
between them; cf. Marr (1982) for details). Unfortunately, computational-level
theories are often underconstrained by the available empirical data, allowing for
several different input-output mappings and corresponding theories. A first attempt
at mitigating this problem can now be based on the aforegiven Church-Turing thesis:
If the thesis were true, the set of functions computable by a cognitive system would
be a subset of the Turing-computable functions. Now, if a computational-level
theory would assume that the cognitive system under study computes a function
uncomputable by a Turing machine then the model could already be rejected on
theoretical grounds.

Still, directly applying the notion of Turing computability as equivalent to the
power of cognitive computation has to be considered overly simplistic. Whilst it
has been commonly accepted that the thesis holds in general, its practical relevance
in cognitive agents and systems is at least questionable. As already recognized in
Simon (1957), actual cognitive systems (due to their nature as physical systems)
need to perform their tasks in limited time and with a limited amount of space at
their disposal. Therefore, the Church-Turing thesis by itself is not strict enough for
being used as a constraint on cognitive theories as it does not take into account any
of these dimensions. To mitigate this problem, different researchers over the last
decades have proposed the use of mathematical complexity theory, like the concept
of NP-completeness, as an assisting tool (see, e.g., Levesque 1988; Frixione 2001),
bringing forth the so called “P-Cognition thesis”: Human cognitive capacities are
hypothesized to be of the polynomial-time computable type.



46 T.R. Besold and R. Robere

However, using the “polynomial-time computable” as synonymous with “effi-
cient” may already be overly restrictive. In modern times there are many examples
of problems which have algorithms that have worst-case exponential behaviour, but
tend to work quite well in practice on small inputs (take, for example, any of the
modern algorithms for the travelling salesperson problem). However, this is not the
type of restriction that we will focus on. Instead we take the following viewpoint: it
is often the case that we as humans are able to solve problems which may be hard
in general but suddenly become feasible if certain parameters of the problem are
restricted. This idea has been formalized in the field of parameterized complexity
theory, in which “tractability” is captured by the class of fixed-parameter tractable
problems FPT!:

Definition 4.1 (FPT). A problem P is in FPT if P admits an O(f (x)n) algorithm,
where n is the input size, « is a parameter of the input constrained to be “small”, ¢
is an independent constant, and f is some computable function.

Originating from this line of thought, van Rooij (2008) introduces a specific
version of the claim that cognition and cognitive capacities are constrained by the
fact that humans basically are finite systems with only limited resources for compu-
tation: Applying the just presented definition from parameterized complexity theory,
this basic notion of resource-bounded computation for cognition is formalized in
terms of the so called “FPT-Cognition thesis”, demanding for human cognitive
capacities to be fixed-parameter tractable for one or more input parameters that
are small in practice (i.e., stating that the computational-level theories have to be
in FPT).

4.3 Theoretical Foundation: The Tractable AGI Thesis

But whilst the aforementioned P-Cognition thesis also found its way into Al (cf.,
e.g., Cooper 1990; Nebel 1996), the FPT-Cognition thesis this far has widely been
ignored. Recognizing this as a serious deficit, for example in Robere and Besold
(2012) and Besold and Robere (2013a), we proposed a way of (re)introducing the
idea of tractable computability for cognition into Al and cognitive systems research
by rephrasing and accordingly adapting the FPT-form of the Tractable Cognition
thesis. As all of the currently available computing systems used for implementing
cognitive models and cognitive systems are ultimately finite systems with limited
resources (and thus in this respect are not different from other cognitive agents and
human minds and/or brains), in close analogy we developed the “Tractable AGI
thesis” (Tractable Artificial and General Intelligence thesis).

IFor an introduction to parameterized complexity theory see, e.g., Flum and Grohe (2006) and
Downey and Fellows (1999).
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Tractable AGI thesis Models of cognitive capacities in artificial intelligence
and computational cognitive systems have to be fixed-parameter tractable for
one or more input parameters that are small in practice (i.e., have to be in
FPT).

Concerning the interpretation of this thesis, suppose a cognitive modeler or
Al system designer is able to prove that his model at hand is—although in its
most general form possibly NP-hard—fixed-parameter tractable for some set of
parameters «. This implies that if the parameters in « are fixed small constants for
problem instances realized in practice, then it is possible to efficiently compute a
solution.

4.4 Worked Example: Complex Analogies in HDTP

Before further continuing the theoretical line of work in Sect. 4.5, we want to spend
some time on a worked application case of analyzing a cognitive Al system by
means of formal methods. We therefore give a fairly detailed reproduction of results
from a parameterized complexity study of the Heuristic-Driven Theory Projection
(HDTP) computational analogy-making framework (originally presented in Robere
and Besold 2012). By this we hope to show how the mostly academic-theoretical
considerations from Sects. 4.2 and 4.3 directly connect to everyday Al and cognitive
systems practice.

4.4.1 The Motivation Behind It

During the course of a day, we use different kinds of reasoning processes: We solve
puzzles, play instruments, or discuss problems. Often we will find ourselves in
places and times in which we apply our knowledge of a familiar situation to the
(structurally similar) novel one. Today it is undoubted that one of the basic elements
of human cognition is the ability to see two a priori distinct domains as similar
based on their shared relational structure (i.e., analogy-making). Some prominent
cognitive scientists as, for example, Hofstadter (2001), go as far as to consider
analogy the core of cognition itself. Key abilities within everyday life, such as
communication, social interaction, tool use, and the handling of previously unseen
situations crucially rely on the use of analogy-based strategies and procedures. One
of the key mechanisms underlying analogy-making, relational matching, is also the
basis of perception, language, learning, memory and thinking, i.e., the constituent
elements of most conceptions of cognition (Schwering et al. 2009b).

Because of this crucial role of analogy in human cognition, researchers in cogni-
tive science and artificial intelligence have been creating computational models of
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analogy-making since the advent of computer systems. But the field has changed
significantly during that time: Early work such as that of Reitman et al. (1964) or
Evans (1964) should serve as a proof of concept for the possibilities and the power of
Al systems, possibly paving the way for more flexible approaches to reasoning and
artificial cognition. Still, from a theoretical and methodological point of view these
systems were not necessarily committed to considerations concerning cognitive
adequacy or psychological plausibility and did not correspond to a fully developed
underlying theoretical paradigm about human analogy-making. In contrast, modern
analogy systems—the most prominent of which probably is the Structure-Mapping
Engine (SME, Falkenhainer et al. 1989) and MAC/FAC (Gentner and Forbus
1991)—come with their respective theory about how analogy-making works on a
human scale (see, e.g., Gentner (1983) for the theory behind SME) and often even
make claims not only on a computational level of description, but even hypothesize
more or less precisely specified algorithmic mechanisms of analogy.

And this now is where our proposed approach for formal analysis comes into
play: If human-likeness in a system’s theoretical foundations and behavior is
assumed, it should also automatically become clear that the same standards of
evaluation and the same formal properties which are true for human cognition have
to be met and have to hold for the system. Moreover this has to be the case in general
and not only on a selected subset of examples or under positively limiting conditions
and a priori assumptions on the possible cases a system might encounter (unless, of
course, these assumptions can also be made without loss of generality for the human
counterpart). Analogy-making is a prime example for this setting as—precisely due
to the aforementioned variety of occurrences and manifestations of this cognitive
capacity—the architect of a cognitive system model of analogy has to make sure
that certain properties of the system hold true with a high degree of independence
from the specific problem case at hand.

Furthermore, from a tractability perspective, computational analogy systems
are a first-rate application area for our theoretical paradigm. Analogy-making has
gained attention in cognitive science and cognitive Al not only because of its general
applicability but also due to the fact that humans seem to be able to retrieve and
use analogies in very efficient ways: Conversations happen in real time, social
interaction—although highly diverse in its different levels—is pervasive and in
most cases does not require attention or conscious thought (even if we are only
acquainted with the general rules and paradigm and not with the specific situations
we encounter), and once we understood the solution to a certain riddle or problem
we have no problem immediately applying it to analogical cases even when they are
completely different in appearance or setting.

4.4.2 The Formal Analysis

Heuristic-Driven Theory Projection, introduced in Schwering et al. (2009a), is a
formal theory and corresponding software implementation, conceived as a math-
ematically sound framework for analogy-making. HDTP has been created for
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computing analogical relations and inferences for domains which are given in the
form of a many-sorted first-order logic representation. Source and target of the
analogy-making process are defined in terms of axiomatizations, i.e., given by a
finite set of formulae. HDTP tries to produce a generalization of both domains by
aligning pairs of formulae from the two domains by means of a process called anti-
unification, which tries to solve the problem of generalizing terms in a meaningful
way, yielding for each term an “anti-instance” in which some subterms have been
replaced by variables (which in turn would allow for a retrieval of the original terms
by a substitution of the variables by appropriate subterms).

HDTP in its present version uses a restricted form of higher-order anti-unification
presented in Krumnack et al. (2007). In higher-order anti-unification, classical
first-order terms are extended by the introduction of variables which may take
arguments (where classical first-order variables correspond to variables with arity
0), making a term either a first-order or a higher-order term. Then, anti-unification
can be applied analogously to the original first-order case, yielding a generalization
subsuming the specific terms. The class of substitutions which are applicable
in HDTP is restricted to (compositions of) the following four cases: renamings
(replacing a variable by another variable of the same argument structure), fixations
(replacing a variable by a function symbol of the same argument structure),
argument insertions, and permutations (an operation rearranging the arguments of a
term).

This formalism has proven capable of detecting structural commonalities not
accessible to first-order anti-unification, as for instance also structural commonali-
ties between functions and predicates within the logical language can be found and
exploited (whilst the first-order formalism would in these be limited to the respective
argument positions only), allowing for a more general recognition of relational
mappings (as opposed to mere attribute mappings). Once the generalization has been
computed, the alignments of formulae together with the respective generalizations
can be read as proposals of analogical relations between source and target domain,
and can be used for guiding an analogy-based process of transferring knowledge
between both domains (see Fig. 4.1 for an overview of the analogy-making process).
Analogical transfer results in structure enrichment on the target side, which
corresponds to the addition of new axioms to the target theory, but may also involve
the addition of new first-order symbols.

Whilst HDTP undoubtedly exhibits pleasant properties—say, in terms of
expressivity of the modeling language, and clarity of the underlying conceptual
approach—until recently there had been no detailed analysis of its computational

Fig. 4.1 A schematic Generalization (G)
overview of HDTP’s

generalization-based
approach to analogy

SOURCE (S) ................. ORI TARGET (T)
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tractability. In order to change this unsatisfactory state of affairs, we decided to
apply some techniques from parameterized complexity theory to the system trying
to better understand its strengths and weaknesses.

As already mentioned, a restricted higher-order anti-unification is defined as any
composition of a certain set of unit substitutions which can formally be specified in
the following way:

Definition 4.2 (Restricted higher-order anti-unification). The following are the
types of unit substitutions allowed in restricted higher-order anti-unification.

1. A renaming p(F, F') replaces a variable F' € V, with another variable F’ € V,:

p(F.F)
F(l],...,[,,) ———)F(Zl,...,[”).

2. A fixation ¢ (F,f) replaces a variable F € V, with a function symbol f € C,,:

d(Ff)
F(ty,....t)) — f(t1,....t,).

3. An argument insertion ¢(F, F’, V, i) is defined as follows, where F € V,,F’ €
Viit1, V € Vi, i € [n]:

(FF V),
F(l‘],...,tn) —)F(tl,...,t,'_l,V(t,',...,ti+k),l‘i+k+1,...,l‘n).

It “wraps” k of the subterms in a term using a k-ary variable, or can be used to
insert a O-ary variable.

4. A permutation 7 (F, ) rearranges the arguments of a term, with F € V,, 7 :
[n] — [n] a bijection:

w(F,7)
F(Il, - ,tn) _— F(ln(l), e, tn(n))-

A restricted substitution is a substitution which results from the composition of any
sequence of unit substitutions.

By considering different combinations of restricted substitutions we can define
several different forms of higher-order anti-unification. Unfortunately, as already
recognized by Krumnack et al. (2007), the least general generalizer is not neces-
sarily unique. Therefore, in our analysis we instead consider decision versions of
the problems parameterized by the number of substitutions, variables, and types of
variables used.

Problem 4.1 (F Anti-Unification).

Input: Two terms f, g, and a natural k € N
Problem: Is there an anti-unifier 4, containing at least k variables, using only
renamings and fixations?
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Problem 4.2 (FP Anti-Unification).

Input: Two terms f, g, and naturals [, m,p € N.
Problem: Is there an anti-unifier 4, containing at least / O-ary variables and at
least m higher arity variables, and two substitutions o, T using only

renamings, fixations, and at most p permutations such that & 2 f and
h g?
Problem 4.3 (FPA Anti-Unification).

Input: Two terms f, g and naturals /,m, p,a € N.

Problem: Is there an anti-unifier 4, containing at least / O-ary variables, at least
m higher arity variables, and two substitutions ¢, T using renamings,
fixations, at most p permutations, and at most a argument insertions

such that h > f and h — g?

We summarize our (parameterized) complexity-theoretic results of higher-order
anti-unification in the following theorem?:

Theorem 4.1. 1. F Anti-Unification is solvable in polynomial time.

2. FP Anti-Unification is NP-complete and W[1]-hard w.r.t. parameter set {m, p}.
3. Let r be the maximum arity and s be the maximum number of subterms of the
input terms. Then FP Anti-Unification is in FPT w.r.t. parameter set {s, r, p}.

4. FPA Anti-Unification is NP-complete and WI[1]-hard w.r.t. parameter set

{mv p, Cl}.

4.4.3 Interpretation of the Results

We want to provide some thoughts on the consequences of the complexity results
from the previous section, putting the obtained insights into a cognitive Al context
and thereby making the intrinsic connection between the formal considerations and
the analogy mechanism of the implemented system explicit.

We focus on a result directly affecting HDTP. The result showing that FP
higher-order anti-unification is W[1]-hard gives a hint at the difficulty introduced
by the operations admissible within the restricted higher-order anti-unification on
the complexity of the analogy-making process. Indeed, the only way that FP anti-
unification can restructure the order of the terms is by argument permutations,

2The corresponding proofs of the respective results can be found in Robere and Besold (2012).
Moreover, in the theorem statements W([1] refers to the class of problems solvable by constant
depth combinatorial circuits with at most 1 gate with unbounded fan-in on any path from an input
gate to an output gate. In parameterized complexity, the assumption W[1] # FPT can be seen as
analogous to P # NP.
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and our results show that even allowing a single permutation is enough to imply
computational hardness. If we contrast this result against the polynomial-time
algorithm for F anti-unification, we have evidence that even a slight ability to
restructure the input terms makes higher-order anti-unification a difficult problem
to solve.

Now, additionally making the (most likely reasonable) assumption that P #£ NP
(and FPT # WI[I]) holds, the presented hardness results cast a shadow on the
suitability of the HDTP framework in its present state as basis for a general model
for high-level cognitive capacities or a general cognitive architecture. Still, it should
be noticed that the mere fact that HDTP in its present state is basically intractable
does not mean that future versions cannot be made tractable. Here, the insights
obtained from the formal analysis can serve as guidelines for the future evolution
of the system: In our opinion, one of the main questions for future theoretical
research in relation to HDTP will have to address the question of how HDTP’s
version of computing generalizations via restricted higher-order anti-unification can
be further constrained in a meaningful way as to obtain maximal expressivity and
applicability whilst still staying within the domain of polynomial solvability. Also,
more parametrized analysis will be needed, showing which are the factors that really
impact complexity, and which are aspects of a problem that are not really harmful.

4.5 Setting Limits to Heuristics in Cognitive Systems

Leaving the basic considerations and the application study of formal means of
analysis of cognitive Al systems behind us we want to return to a more theoretical
part of our work. A still growing number of researchers in cognitive science and
cognitive psychology, starting in the 1970s with the “heuristics and biases” program
(Kahneman et al. 1982), and today prominently heralded, for instance, in the work
of Gigerenzer and colleagues (2011), argues that humans in their common sense
reasoning do not apply any full-fledged form of logical or probabilistic reasoning
to possibly highly complex problems, but instead rely on mechanisms—which are
mostly automatic and unconcious—that allow them to circumvent the impending
complexity explosion and nonetheless reach acceptable solutions to the original
problems. Amongst the plethora of proclaimed automatisms are, for example, the
representativeness heuristic (Kahneman et al. 1982) or the take-the-best heuristic
(Czerlinski et al. 1999).

All of these mechanisms are commonly subsumed under the all-encompassing
general term “heuristics”. Still, on theoretical grounds, at least two quite different
general types of approach have to be distinguished within this category: Either the
complexity of solving a problem can be reduced by reducing the problem instance
under consideration to a simpler (but solution equivalent) one, or the problem
instance stays untouched but—instead of being perfectly (i.e., precisely) solved—is
dealt with in a good enough (i.e., approximate) way.
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Now, taking the perspective of an architect of a cognitive system considering
to include human-inspired heuristics in his reasoning model for solving certain
tasks, a crucial question quite straightforwardly arises: Which problems can actu-
ally be solved by applying heuristics—and how can the notion of heuristics
be theoretically modeled on a sufficiently high level as to allow for a general
description? Having a look at recent work in parameterized complexity theory and
in hardness of approximation, we find that the two distinct types of heuristics
naturally correspond to two well-known concepts from the respective fields. As
firstly shown in Besold (2013) and reproduced in the following, this opens the
way for establishing a solid theoretical basis for models of heuristics in cognitive
systems.

4.5.1 The Reduction Perspective

In Sect. 4.3, the Tractable AGI thesis demanded for models of cognitive capacities
in Al to be in FPT. However, there is also a non-trivial corollary that can be derived
from this property: any instance of a problem in FPT can be reduced to a problem
kernel.

Definition 4.3 (Kernelization). Let P be a parameterized problem. A kernelization
of P is an algorithm which takes an instance x of P with parameter « and maps it in
polynomial time to an instance y such that x € P if and only if y € P, and the size
of y is bounded by f (k) (f a computable function).

Theorem 4.2 (Kernelizability Downey et al. 1997). A problem P is in FPT if and
only if it is kernelizable.

This theorem on the one hand entails that any positive FPT result obtainable
for the model in question essentially implies that there is a “downward reduction”
for the underlying problem to some sort of smaller or less-complex instance of
the same problem, which can then be solved—whilst on the other hand (assuming
WI[1] # FPT) any negative result implies that there is no such downward
reduction. This equivalence forms a first connecting point to some of the different
heuristics frameworks in cognitive science and cognitive psychology—and can
also have important ramifications for the modeling of many cognitive capacities
in computational cognitive systems.

On the one hand, from a constructive perspective, by actively considering the
kernelizability of problems (or rather problem classes), we can provide inspira-
tion and first hints at hypothesizing a specialized cognitive structure capable of
computing the reduced instance of a problem, which then might allow for an
efficient solving procedure. On the other hand, taking a more theoretical stance,
by categorizing problems according to kernelizability (or their lack thereof) we
also can establish a distinction between problem classes which are solvable by
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reduction-based heuristics and those which are not—and can thus already a priori
decide whether a system implementing a reduction-based heuristics might generally
be unable to solve a certain problem class.

From a theoretical perspective the strict equivalence between FPT-membership
and kernelizability of a problem is somewhat surprising. However, on practical
and applied grounds, the correspondence should seem natural and, moreover,
should fairly directly explicate the connection to the notion of reduction-based
heuristics: If cognitive heuristics are as fast and frugal as commonly claimed,
considering them anything but (at worst) polynomial-time bounded processes seems
questionable. But now, if the reduced problem shall be solvable under resource-
critical conditions, using the line of argument from Sects. 4.2 and 4.3, we can just
hope for it to be in FPT. Now, combining the FPT-membership of the reduced
problem with the polynomial-time complexity of the heuristics, already the original
problem had to be fixed-parameter tractable. Still, reduction-based heuristics are not
trivialized by this: Although original and reduced problem are in FPT, the respective
size of the parameters may still differ between instances (which possibly can
make an important difference in application scenarios for implemented cognitive
systems).

4.5.2 The Approximation Perspective

There is also a complementary perspective offering an alternate possibility of
(re)interpreting heuristics, namely the theory of approximation algorithms: Instead
of precisely solving a kernel as proposed by reduction-based heuristics, compute an
approximate solution to the original problem (i.e., the solution to a relaxed problem).
The idea is not any more to perfectly solve the problem (or an equivalent instance
of the same class), but to instead solve the problem to some “satisfactory degree”.

Here, a candidate lending itself for being considered a standard analogous to FPT
in the Tractable AGI thesis is APX, the class of problems allowing polynomial-time
approximation algorithms:

Definition 4.4 (APX). An optimization problem P is in APX if P admits a
constant-factor approximation algorithm, i.e., there is a constant factor € > 0
and an algorithm which takes an instance of P of size n and, in time polynomial in
n, produces a solution that is within a factor 1 + € of being optimal (or 1 — € for
maximization problems).

Clearly, here the meaningfulness and usefulness of the theoretical notion in prac-
tice crucially depends on the choice of the bounding constant for the approximation
ratio: If the former is meaningfully chosen with respect to the problem at hand,
constant-factor approximation allows for quantifying the “good enough” aspect of
the problem solution and, thus, offers a straightforward way of modeling the notion
of “satisficing” (Simon 1956) (which in turn is central to many heuristics considered
in cognitive science and psychology).
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One should also be careful to note that “constant-factor approximation” is also
quite unrestrictive in ways other than pure tractability. While this class captures
problems that may have efficient algorithms which produce an solution that is, say,
half as good as an optimal solution, it also contains problems that have efficient
1/1000-approximations, or 1/1,000,000. While these approximation factors almost
never appear in practice, they are theoretically allowed. However, we believe in
principal that this serves to strengthen any negative results which would place
problems outside of APX.

As in the case of the reduction-based heuristics, one of the main advantages of
formally identifying approximation-based heuristics with APX lies in its limiting
power: If a problem shall be solved at least within a certain range from the
optimal solution, but it turns out that the problem does not admit constant-factor
approximation for the corresponding approximation parameter, the problem can a
priori be discarded as unsolvable with approximation-based heuristics (unless one
wants to also admit exponential-time mechanisms, which might be useful in selected
cases but for simple complexity considerations does not seem to be feasible as a
general approach).’

4.5.3 Joining Perspectives

Having introduced the distinction between reduction-based and approximation-
based heuristics, together with proposals for a formal model of the mechanisms
behind the respective class, we now want to return to a more high-level view and
look at heuristics in their entirety. This is also meaningful from the perspective of
the initially mentioned system architect: Instead of deciding whether he wants to
solve a certain type of task applying one of the two types of heuristics and then
conducting the corresponding analysis, he might just want to directly check whether
the problem at hand might be solvable by any of the two paradigms. Luckily, a fairly
recently introduced theoretical concept allows for the integration of the two different
views—FPT and APX can both be combined via the concept of fixed-parameter
approximability and the corresponding problem class FPA:

Definition 4.5 (FPA). The fixed-parameter version P of a minimization problem
is in FPA if—for a recursive function f, a constant k, and some fixed recursive
function g—there exists an algorithm such that for any given problem instance /

30n the other hand, considering more restrictive notions than APX as, for instance, PTAS (the class
of problems for which there exists a polynomial-time approximation scheme, i.e., an algorithm
which takes an instance of a optimization problem and a parameter € > 0 and, in polynomial time,
solves the problem within a factor 1 4 € of the optimal solution) does not seem meaningful to us
either, as also human satisficing does not approximate optimal solutions up to an arbitrary degree
but in experiments normally yields rather clearly defined cut-off points at a certain approximation
level.
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with parameter k, and question OPT (I) < k, the algorithm which runs in O(f(k)n¢)
(where n = |I|) either outputs “no” or produces a solution of cost at most g(k).

As shown in Cai and Huang (2006), both polynomial-time approximabil-
ity and fixed-parameter tractability with witness (see Cai and Chen (1997) for
details) independently imply the more general fixed-parameter approximability.
And also on interpretation level FPA artlessly combines both views of heuris-
tics, at a time in its approximability character accommodating for the notion of
satisficing and in its fixed-parameter character accounting for the possibility of
complexity reduction by kernelizing whilst keeping key parameters of the problem
fixed.

Clearly, the notion of fixed-parameter approximability is significantly weaker
than either FPT and kernelization, or APX. Nonetheless, its two main advantages
are the all-encompassing generality (independent of the type of heuristics) and
yet again the introduction of a categorization over problem types: If problems of
a certain kind are not in FPA, this also excludes membership in any of the two
stricter classes—and thus (in accordance with the lines of argument given above) in
consequence hinders solvability by either type of heuristics.

Recalling the Tractable AGI thesis introduced in Sect. 4.3, we can use the just
outlined conception of FPA for not only considering classical strict processing and
reasoning in cognitive systems, but for also accounting for models of cognitive
heuristics. This allows us to adapt the original thesis into a (significantly weaker
but possibly more “cognitively adequate”) second form:

Fixed-Parameter Approximable AGI thesis Models of cognitive capacities
in artificial intelligence and computational cognitive systems have to be fixed-
parameter approximable for one or more input parameters that are small in
practice (i.e., have to be in FPA).

Whilst the original Tractable AGI thesis was aimed at Al in general (thus also
including forms of high-level AI which may not be human-inspired, or which
in their results shall not appear human-like), the just postulated thesis, due to
its strong rooting in the (re)implementation of human-style processing, explicitly
targets researchers in cognitive systems and cognitive Al.

4.6 The Importance of Formal Analysis for Cognitive
Systems Research Revisited

An often heard fundamental criticism of trying to apply methods from complexity
theory and formal computational analysis to cognitive systems and cognitive models
are variations of the claim that there is no reason to characterize human behavior in
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terms of some “problem” (i.e., in terms of a well-defined class of computational
tasks), from this drawing the conclusion that computational complexity is just
irrelevant for the respective topics and fields.* In most cases, this judgement seems
to be based on either a misconception of what a computational-level theory in
the sense of Marr (1982) is (which we will refer to as “description error”), or a
misunderstanding of what kind of claim complexity theory makes on this type of
theory (in the following referred to as “interpretation error”).

The description error basically questions the possibility of describing human
behavior in terms of classes of computational tasks. The corresponding argument is
mostly based on the perceived enormous differences between distinct manifestations
of one and the same cognitive capacity already within a single subject (at the
moment for descriptive simplicity’s sake—without loss of generality—leaving aside
the seemingly even more hopeless case of several subjects). Still, precisely here
Marr’s Tri-Level Hypothesis (i.e., the idea that information processing systems
should be analyzed and understood at three different—though interlinked—Ievels)
comes into play. Marr proposed three levels of description for a (biological)
cognitive system, namely a computational, an algorithmic, and an implementation
level. Whilst the latter two are concerned with how a system does what it does from
a procedural and representational perspective (algorithmic level), and how a system
is physically realized (implementation level), the computational level takes the most
abstract point of view in asking for a description of what the system does in terms
of giving a function mapping certain inputs on corresponding outputs. So what is
needed to specify a computational-level theory of a cognitive capacity’ is just a
specified set of inputs, a set of corresponding outputs (each output corresponding
to at least one element from the set of inputs) and a function establishing the
connection between both (i.e., mapping each input onto an output). But now,
due to the high degree of abstraction of the descriptive level, this allows us to
characterize human cognitive capacities in general in terms of a computational-level
theory by specifying the aforementioned three elements—where inputs and outputs
are normally provided (and thus defined) by generalization from the real world
environment, and the function has to be hypothesized by the respective researcher.®

“For reasons unclear to the authors this perspective seems to be more widespread and far deeper
rooted in Al and cognitive systems research than in (theoretical) cognitive science and cognitive
modeling where complexity analysis and formal computational analysis in general by now have
gained a solid foothold.

SHere we presuppose that cognitive capacities can be seen as information processing systems.
Still, this seems to be a fairly unproblematic claim, as it simply aligns cognitive processes with
computations processing incoming information (e.g., from sensory input) and resulting in a certain
output (e.g., a certain behavioral or mental reaction) dependent on the input.

Fortunately, this way of conceptualizing a cognitive capacity naturally links to research in artificial
cognitive systems. When trying to build a system modeling one or several selected cognitive
capacities, we consider a general set of inputs (namely all scenarios in which a manifestation of the
cognitive capacity can occur) which we necessarily formally characterize—although maybe only
implicitly—in order to make the input parsable for the system, hypothesize a function mapping
inputs onto outputs (namely the computations we have the system apply to the inputs) and finally
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Once all three parts have been defined, formal computational analyses can directly
be conducted on the obtained computational-level theory as the latter happens
to coincide in form with the type of problem (i.e., formal definition of a class
of computational tasks) studied in computational complexity and approximation
theory. And also the existence of at least one computational-level theory for each
cognitive capacity is guaranteed: Simply take the sets of possible inputs and
corresponding outputs, and define the mapping function element-wise on pairs of
elements from the input and output, basically creating a lookup table returning for
each possible input the respective output.

Leaving the description error behind us, we want to have a look at the inter-
pretation error as further common misconception. Even when modifying the initial
criticism by not questioning the overall possibility of characterizing human behavior
in terms of classes of computational tasks, but rather by stating that even if there
were these classes, it would not have to be the case that humans have to be
able to solve all instances of a problem within a particular class, we believe that
this argument is missing the point. First and foremost, as further elaborated upon
in the initial paragraph of the following section, we propose to use complexity
and (in)-approximability results rather as a safeguard and guideline than as an
absolute exclusion criterion: As long as a computational-level theory underlying
a computational cognitive model is in FPT, APX, or FPA—where in each case
the system architect has to decide which standard(s) to use—the modeler can be
sure that his model will do well in terms of performance for whatever instance of
the problem it will encounter.” Furthermore, it is clear that in cognitive systems and
cognitive models in general a worst-case complexity or approximability analysis for
a certain problem class only rarely (if at all) can be taken as an absolute disqualifier
for the corresponding computational-level theory.® It might well be the case that
the majority of problem instances within the respective class is found to be well
behaving and easily solvable, whilst the number of worst-case instances is very
limited (and thus possibly unlikely to be encountered on a basis frequent enough as

obtain a well-characterized set of outputs (namely all the outputs our system can produce given its
programming and the set of inputs).

7In discussions with researchers working in Al and cognitive systems very occasionally critical
feedback relating to the choice of FPT, APX, and FPA as reference classes has been given, as
these have (curiously enough) been perceived as too less restrictive. Harshly contrasting with the
previously discussed criticism it was argued that human-level cognitive processing should be of
linear complexity or less. Still, we do not see a problem here: Neither are we fundamentalist about
this precise choice of upper boundaries, nor do we claim that these are the only meaningfully
applicable ones. Nonetheless, we decided for them because they can quite straightforwardly be
justified and are backed up by close correspondences with other relevant notions from theoretical
and practical studies in cognitive science and Al.

80f course this also explicitly includes the case in which the considered classes are conceptually
not restricted to the rather coarse-grained hierarchy used in “traditional” complexity theory, but
if also the significantly finer and more subtle possibilities of class definition and differentiation
introduced by parametrized complexity theory and other recent developments are taken into
account.
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to turn their occurrence into a problem). However, at a high level, complexity theory
can still provide researchers with meaningful information—given a computational
intractability or inapproximability result the researcher has an opportunity to refocus
his energies onto algorithms or analysis which are more likely to be fruitful.
Moreover, in the process of the formal analysis, the researcher now becomes more
intimately familiar with the problem at hand—which parameters of the problem
are responsible for a “complexity explosion”, which parameters can be allowed to
grow in an unbounded fashion and still maintain computational efficiency. And, of
course, if one is still put off by this sort of complexity analysis, it may simply be a
matter of changing the particular analysis type: Where worst-case analyses may on
certain grounds be questionable as decisive criterion about the overall usefulness
of a particular computational-level theory for a cognitive capacity, average-case
analyses (which admittedly are significantly harder to perform) can change the
picture dramatically.

4.7 Conclusion: Limiting the Limits

A second frequent criticism (besides the popular general objection discussed in the
previous section) against the type of work presented in this paper is that demanding
for cognitive systems and models to work within certain complexity limits might
always be overly restrictive: Maybe each and every human mental activity actually
is performed as an exponential-time procedure, but this is never noticed as the
exponent for some reason always stays very small. Undoubtedly, using what we
just presented, we cannot exclude this possibility—but this also is not our current
aim. What we want to say is different: We do not claim that cognitive processes
are without exception within FPT, APX, or FPA, but we maintain that as long
as cognitive systems and models stay within these boundaries they can safely be
assumed to be plausible candidates for application in a resource-bounded general-
purpose cognitive agent (guaranteeing a high degree of generalizability, scalability,
and reliability). Thus, if a system architect has good reasons for plausibly assuming
that a particular type of problem in all relevant cases only appears with a small
exponent for a certain exponential-time solving algorithm, it may be reasonable to
just use this particular algorithm in the system. But if the architect should wonder
whether a problem class is likely to be solvable by a resource-bounded human-
style system in general, or if it should better be addressed using reduction-based or
approximation-based heuristics, then we highly recommend to consider the lines of
argument presented in the previous sections.

Concerning related work, besides the conceptually and methodologically closely
related, but in its focus different efforts by van Rooij (2008) and colleagues in
theoretical cognitive science (see, e.g., Kwisthout and van Rooij 2012; Blokpoel
et al. 2011), of course there also is work relating fixed-parameter complexity
to AL Still, except for very few examples as, e.g., Wareham et al. (2011), the
applications mostly are limited to more technical or theoretical subfields of artificial
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intelligence (see, e.g., Gottlob and Szeider (2008) for a partial survey) and—to
the best of our knowledge—this far have not been converted into a more general
guiding programmatic framework for research into human-level Al and cognitive
systems. To a certain extent, a laudable exception to this observation may be
found in Chapman (1987), where the author presents a high-level algorithm for
general purpose planning and—using formal methods similar to the ones considered
above—derives general constraints for domain-independent planning under certain
assumptions on the expressivity of the action representations, together with ways of
avoiding the found limitations.

We therefore in our future work hope to develop the overall framework further,
also showing the usefulness and applicability of the proposed methods in different
worked examples from several relevant fields: The range of eligible application
scenarios spans from models of epistemic reasoning and interaction, over cognitive
systems in general problem-solving scenarios, down to models for particular cogni-
tive capacities as, for example, analogy-making (see, e.g., Sect. 4.4 and additionally
Besold and Robere (2013b) for a proof of concept).
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Chapter 5
Machine Intelligence and the Ethical Grammar
of Computability

David Leslie

Abstract Since the publication of Alan Turing’s famous papers on “machine
intelligence” over six decades ago, questions about whether complex mechanical
systems can partake in intelligent cognitive processes have largely been answered
under the analytical rubric of their capacity successfully to simulate symbol-
mongering human behavior. While this focus on the mimetic potential of computers
in response to the question “Can machines think?” has come to be accepted as one
of the great bequests of Turing’s reflections on the nature of artificial intelligence,
I argue in this paper that a closer look at Turing’s oeuvre reveals an especially
informative tension between the pragmatic and normative insights, which enabled
him in 1936 to formulate his pioneering version of the theory of mechanical
computability, and his later attempt to argue for a simplistic notion of “machine
intelligence” as an effectual imitation of the human mind. In fleshing out the source
of this tension, I endeavor to show how the mimetic model of “thinking machines”
that Turing eventually embraces is ultimately at cross-purposes with the normative-
pragmatic insights by which he reached his original innovations in computability
theory and combinatorial logic.

Keywords Machine intelligence ¢ Effective calculability ¢ Church-turing
thesis ¢ Turing test « Computability ¢ Inexhaustibility ¢ Limitative theorems
* Metamathematics

5.1 Introduction

It is an astonishing feature of the glut of articles, books and collected volumes pub-
lished over the last three decades on the foundations of the notion of computability
that so few have placed the so-called “confluence of ideas of 1936 (Gandy 1988),
which yielded the Church-Turing Thesis, in the wider intellectual-historical context
of the converging philosophical revolutions that were erupting contemporaneously
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both in European and in Anglo-American thinking. Beyond the formalist challenge
to finitary proof spurred by Hilbert’s program, beyond the nettle and tug of the thorn
of diagonalization, which had kept unresolved the disturbing antinomies seemingly
inherent in the new logic, “what was in the air”!' in decades surrounding ‘36 —
an air inhaled in common by Post, Church, Turing and Godel but also by Peirce,
James, Dewey, the later Wittgenstein, Husserl and Heidegger — was the waning mist
of a Cartesian bygone ever more displaced by the gathering density of a wholly
unprecedented postmetaphysical milieu. In this weighty atmosphere, fundamental
questions then circulating about the epistemic and ontological status of formal
systems, about the nature of meaning and the anatomy of predication, and about the
proper character of the relationship of mind and world were being refracted through
the deflationary prism of incipient pragmatist, hermeneutic, and phenomenological
insights.

Common to all of these latter perspectives was a radical rejection of the last
remnants of the paradigm of representationalism that had all but defined the explana-
tory aspirations of the heritage of thinkers who wrote in the wake of Descartes’
inauguration of the modern “mind’s” search for certain knowledge — a search to find
the indubitable building blocks of human comprehension whose mentalistic starting
point shunted all interrogatory intent through the methodological sluice gate of the
pregiven dichotomy of intellectus et rei. This heritage had become all-too-enthralled
by what C.I. Lewis (1929) was to call the ignis fatuus (p. 9), the alluring but illusory
glow, of an absolute Reality to which Cartesian thoughts or Kantian categories or
Tractarian facts could be said to correspond. That world “out there” against which
incorrigible minds, conceptual schemes, and picture-theoretic syntax could be set
in adequational relief gradually became a “world well lost” (Rorty 1982) insomuch
as the plodding self-realization of the limitations of a reason increasingly situated
in its own practical, cultural and historical contexts of origination, seemed only
more and more to confirm that there was no “relation of closeness of fit” between
the semiotic systems and the patterns of signs and relations through which humans
thought and communicated and some timeless “way the world is” (Goodman 1960).
And, as Occidental reason thus came progressively to discover its own predicative
and ontological limitations so too did it come progressively to debunk the “spectator
theory of knowledge” (Dewey 1960, p. 23) and the reifying myths of mental- and
world-givenness, which had enabled the Cartesian tradition under all of its motley
empiricist and rationalist guises to satiate its own epistemological urge.

Two critical trajectories, in particular, burst forth from within modern thinking
itself and conspired to instigate the radical deflation of such a metaphysically
bloated Cartesian ambition. In the first place, there arose an intensifying pro-
ceduralization of reason viewed not as a hypostatized res cogitans, viz. not as
thinking-stuff or mental essence, but rather as a concrete mode of a particular kind

I'This is Gandy’s phrase and the theme around which he organizes “The Confluence of Ideas in
1936.”
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of shared human practice.? Fueled by the exemplary model of empirical scientific
method first conceptualized in the work of thinkers like Gassendi, Locke and
Newton, this sociocultural shift to the detranscendentalized paradigm of procedural
rationality gradually deflated the explanatory hopes of any theoretical outlook
which had thenceforth been steered by a sense of privileged metaphysical purport.
Instead, the thoroughgoing but salutary skepticism, which had initially fueled the
rise of the fallibilistic self-understanding of the “experimental” and inductively-
driven modern sciences, seemed increasingly to penetrate all Occidental modes of
inquiry and explanation. A splinter of insuperable provisionalism thus broke off
in the skin of post-traditional thinking. As a consequence, the ontological linking
point of “mind and world,” which had been required by Cartesian metaphysics,
dissolved into the dialogically animated linking point of reciprocally implicating
processes of giving and asking for reasons. Indeed, it was based upon this
procedural transposition of reason on the plane of the everyday communicative
exchange of evidence, assessment and conclusion that the collaborative quest for
the clarification of common and publically available experience began to define a
postconventional society compelled to reproduce itself without recourse to any non-
self ascribed social or ontological categories. The strengthening acknowledgement
of this processual thawing of reason hence signaled a dramatic shift in intellectual
orientation whereupon the collaborative coping of co-operating humans, who were
responsible solely to each other in creating and passing on the shared vocabularies
and conventions, which steered and coordinated their practices, began to take
elucidatory priority over the simplistic copy-theoretic views of a fixed and ineffable
Reality that was somehow intrinsically liable to being captured by the polished
mirror of the “Western mind.” In this respect, the antecedent normative significance
of reasoning as a consensually anchored social practice came radically to dislodge
the residua of naive essentialist and imagist logic, which, by theoretical fiat, had
erroneously reified the provinces of Thought and Being.

In the second place and congruently, a modern reasoning hence ever more
compelled to ground itself ex nihilo steadily came to discover the difficult and self-
defeating irony emergent from its own insuperable finitude. That is, in the wake of
the deflationary impetus most forcefully initiated by Kant’s anthropocentric turn, the
embodied carrier of modern knowing became the condition of possibility of knowl-
edge as such, hence mooring the sovereign claims of human reasoning to the fraught
transience of its all-too-human medium. Here, the preeminent subject of knowledge,
that very ascendant source of sapient knowing, that sole station of the Renaissance
“dignity of man” and of the Cartesian cogito, was itself called before the critical
tribunal of its own corporeally and sociohistorically situated enabling conditions.
And, as the sinews of experience thus violently turned back upon the flesh of
experience itself, reason’s claim to the unconditionality force of its assertions was
improbably situated in an animate cross-reference with itself. That is, it was situated

2This “theme of postmetaphysical thinking” has been stressed both by Jiirgen Habermas (1992)
and by Karl-Otto Apel (1998).
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in all the conditioning contexture of its own transitory circumstances of genesis. In
this sense, aside from yielding the strains of historicism and detranscendentalization
that culminated in the epoch-defining materialist critique of metaphysics, which sent
tremors through the intellectual landscape of fin-de-sicle Europe, Kantian critical
philosophy incited the difficult and painfully reflexive learning process that Michel
Foucault (1966/1994) terms the “finitization of man,” “the primary discovery of
finitude” (p. 342) per se — what Hans Georg Gadamer (1960/1992), in a similar vein,
calls a pathei mathos, an agonizing but formative education in epistemic humility
and in the inexorability of mortal limitation (p. 357).

And so, it is in this context of the radical finitization and procedural deflation
of reason in the midst of a fading trace of Cartesian epistemological convictions
that I would like, in this paper, to reposition the innovations of the protagonists of
’36. For it is their insurgent skepticism towards Hilbert’s militant rejection of the
ignoramibus, their efforts to rescale the ambitions of metamathematics and logic
by revealing “absolutely unsolvable combinatory problems,” that stimulated the
progressive fine-graining of the idea of effective calculability which culminated
in Turings famous paper on computable numbers. To be sure, inasmuch as the
development of the Church-Turing Thesis was motivated by the pressure to devise
negative and balloon-bursting responses to Hilbert’s program, the very concepts
of general recursiveness, of lambda-definability, of finite combinatorial processes,
and of Turing machines all functioned as subsidiary but requisite components of
the more basic critical-deflationary endeavor to yield with unadulterated clarity
the incompleteness and undecidability results for which the thinkers of ’36 are
rightfully best remembered. And, it is far from coincidental, as I will claim here,
that what made Turing computability so definitive, indeed conclusive, for Turing’s
contemporaries was the distinctive and wholly novel way that he was able to apply
concepts of radical finitization and procedural deflation to this most basic kind of
mathematical reasoning.

In keeping with this wider conceptual-historical purview, I want to focus, in what
follows, on an especially informative tension that surfaces in the writings of Turing
— a tension between the pragmatic and normative insights, which enabled him in
the 1930s to formulate both his pioneering version of the theory of mechanical
computability as well as his solution to Hilbert’s Entscheidungsproblem, and his
later attempt to argue for a simplistic notion of “machine intelligence” as an
effectual imitation of the human mind, an attempt founded on a recidivistic appeal
to a mimetic logic largely parasitic upon the exact Cartesian heritage against which
his earlier detransendentalizing insights in no small measure militated.

I will, in effect, attempt to tell here a tale of two Turings. The Turing of ’36, on
my account, revolutionizes recursion theory by finitizing effective calculability as
a universalizable process of agentially-situated and intersubjectively compositional
reckoning, which is both constitutively subject to the detranscendentalizing con-
straints of the concrete practice of human computing and ultimately limited by the
radical indeterminacy and incompleteness immanent in mathematical experience
as such. By contrast, the Turing of the 1950s, while making several significant
qualifications which intimate the limitations of machine intelligence, still presses
a reifying notion of human mindedness into the service of a one-dimensional copy
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theory of Al In fleshing out the source of the tension between these two Turing’s,
I will endeavor to show how the mimetic model of “thinking machines” that Turing
eventually embraces is ultimately at cross-purposes with the normative-pragmatic
insights by which he reached his original innovations and for reason of which he
later waivers with regard to the unrestricted scope of precisely that imitative model.
I will attempt finally to make explicit just what was so implicitly and intuitively
convincing to his contemporaries about this turn to generalizable finite procedures
of computing as a way better to articulate the nature of recursive calculation than
any offered before.

5.2 The Lures of Imitation

It is now over six decades since Alan Turing first answered the question of whether
complex mechanical systems can partake in intelligent cognitive processes under
the analytical rubric of their capacity successfully to simulate symbol-mongering
human behavior. Much of the downstream controversy that has surrounded Turing’s
famous test involves the criterion of adequacy that he presupposes as establishing
what counts as valid evidence for machine intelligence. Does equating the phrase
“programming a machine to think” with the phrase “programming a machine to
imitate a brain” (as Turing does in his 1951 lecture, “Can Digital Computers
Think?” (1951/2004, p. 485)) constitute a convincing inferential step in arguing for
AI? More precisely, is the analysans of this logic of mimesis or imitation adequate to
the analysandum of predicating of machines that they possess intelligence? Can the
capacity for thinking and understanding be warrantably projected onto computers
thereby?

One of the immediate challenges faced by those who would answer any one
of these questions affirmatively is the problem of latent hypostatization evidently
forced upon any supporter of the “simulation-view.” The issue is relatively straight-
forward: the mimetic criterion of machine intelligence must assume that there exists
some-thing denoted “intelligence,” “mind,” or “thought” that can be imitated as
such. That is, the logic of mimesis must assume the concreteness of the object of
simulation and is therefore apt to reify an animate social process as a mechanically
duplicable product without ever justifying why or how it is entitled to do so. Such
a potentially incautious conflation of the “thinking” and the “thought” makes this
position susceptible to what Max Black (1946) called a “process/product ambiguity”
(p- 177) and Sellars later (1956/1997), the “notorious ing/ed ambiguity” (p. 54)3
Along the lines of these latter views, the imitation-theoretic use of the concept of
intelligence relies on the vagueness created by its own inattention to the difference
between the activity or force of intellecting and the results or artifacts of what
is intellected, in order to deem intelligence traits that are speciously concrete

3Notably, a distinction of this sort arises much earlier in analyses of logic but then again even
more forcefully in the process philosophy of Alfred North Whitehead. It takes on a more semantic
complexion in the work of Black, Sellars, and Searle (1968, p. 422).
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and thereby subject to replication without remainder. This suppositional basis is
consequently vulnerable to the charge that thinking is a human activity that is
done amidst living and interacting people who must together continuously rebuild
the ship of collaboratively achieved meaning in the open seas of indeterminate
human experience. It is not a concretum in rerum natura that is found and that
is thereby liable to simple-minded copying. In this regard, the tender underbelly of
the imitation argument first formulated by Turing inheres in exactly the way that
such a Cartesian recidivism enables a kind of essentialist epistemic overstretching
whereby “the mental” once again comes to be erroneously predicable as such and
therefore erroneously available for totalizing simulation.

Be that as it may, it is quite remarkable and not-often-enough noted that
throughout his elaborations of the nature of machine intelligence, Turing himself
is explicitly at grips with the problems inherent in this mimetic way of thinking
and offers several significant qualifications of his position. The most vital of these
for our purposes arises in Turing’s 1948 discussion in “Intelligent Machinery” of
the limitations of discipline and the necessity for initiative in the generation of
intelligent behavior. In an oft-quoted passage of this essay, he writes,

To convert a brain or machine into a universal machine is the extremist form of discipline.
Without something of this kind one cannot set up proper communication. But discipline
is certainly not enough to produce intelligence. That which is required in addition we call
initiative. This statement will have to serve as a definition. Our task is to discover the nature
of this residue as it occurs in man and to try and copy it in machines (1948/2004, p. 429).

Now, I want to reformulate the line of inquiry Turing is opening here as follows:
What are the conditions of possibility of the animation of intelligent behavior?
Beyond the structuring mechanism of algorithmic pattern, which functions merely
to program intelligence, what are the dynamics of mobilization which actually
quicken intellectual power as such?

Interestingly enough, Turing (1948) begins to broach this puzzle by substituting
the more nuanced term “search” for that of “initiative.” The shift enables him a
higher degree of analytical precision in distinguishing between three distinct sources
of animation which he calls “forms of search” and taxonomizes as “evolutionary,”
“intellectual” and “cultural” (p. 430). Leaving aside his very brief Darwinian
allusion to the first of these, let me instead focus on explicating a crucial point
of contact between the latter two, for it is precisely this nexus between these
intellectual and cultural residua that cuts into the copy-theoretic view of machine
intelligence perhaps in a deeper and more profound way than Turing himself seems
to have realized.

While Turing coins the phrase “intellectual search” in the 1948 paper in order
to indicate the exploratory impetus of a human mindedness forever compelled
to pursue novel combinatory relationships beyond the strictures of mechanical
discipline, he already indicates in his 1938 dissertation on ordinal logics that the
source of the unremitting pressure behind this pursuit is the discovery of Godel.
By diagonalizing out of the enumerable set of all computable functions, Godel is
able to show, for Turing, “the impossibility of finding a formal logic which wholly
eliminates the necessity of using intuition” (1938/2004, p. 193). Put differently,
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in light of the quandary of incompleteness, the ultimate burden of mathematical
reasoning is perforce placed on the shoulders of the practicing and intuiting
mathematician, who is obliged to set about an open-ended intellectual quest insofar
as he aspires to reason mathematically at all. The modest beginning of any and
all mathematical inquiry is, in this sense, the splinter of living doubt irremissibly
lodged in the dermis of a reason congenitally inept to fulfill its charge.

From the start, then, Turing derives the animating factor underlying “intellectual
search” from a certain negative characterization which is anchored in the predica-
ment of inexhaustibility first exposed under the aegis of Godel’s arithmetization of
metamathematics (Godel 1931/1965); intellectual search, that is, is made necessary
by the particular manner in which the problems of unsolvability and undecidability
proved by the limitative theorems underwrite what Godel (1951) refers to as “the
incompletability of mathematics” (1951/1995, p. 133). The irreducible residue of
initiative as this indeterminate intellectual quest precluded from recourse to any
sort of calculus ratiocinator is thus animated in virtue of the very finitizing bounds
to algorithmic reasoning apprehended by the ingenuity and intuitive judgment of
human thinking itself.

But herein lies a manifestation of the difficult irony of finitization I mentioned
at the start. A mathematical reasoning turned back upon itself in the throes of
self-referential perplexity discovers the truth of its own limitations. However, the
determination of this limitation is already, in two significant senses, a transgression
of that same limitation: Either the transgression signifies the ascendency of a human
mind capable of proving the limits of its own rule-bound modality of reasoning
simultaneously from within and outside of the boundaries of reason itself, or, the
transgression signifies something of the radical openness and indeterminacy of a
mathematical experience incapable of resting satisfied with the completion of its
task — a mathematical reasoning hence humbled by the fact that not one of its
embodied carriers can have the last word, leaving each of them no choice but to
speak, to ask each other “why?”, to demand further reasons.

Turing, it seems to me, sides with the latter position. The limitative results do
not, on his view, reveal the superiority of the human mind vis-a-vis the mechanical
discipline of machines (as the mathematical objection to Al a la Godel appeared to
him in 1950 to maintain (1950/2004, p. 450)). Rather they signal the necessity of
the residue of initiative, which in his last published work on solvable and unsolvable
problems, Turing (1954/2004) equates with a “common sense” that is irreducible to
the exercise of reason (1954/2004, p. 595).

Turing’s use of the term “common sense” here takes on a rich and complex
significance equal to the viscosity of its own etymological provenance. For,
inasmuch as the ongoing and incompletable task of mathematics ranges well-
beyond the efforts of any single person, the task must itself be conceived as a
common and collaborative effort. It is the effort of a kind of unbounded community
of search. The “support of common sense” to which Turing refers hence enlists
the kind of intersubjective texture already present in Aristotle when he writes of
the exceptional human quality of synaisthanomenoi (common sense, sensing-in-
common). As Aristotle argues, unlike cows or sheep, which merely dwell upon
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their pastures side-by-side, human beings sense-together as a primitive mode
communicative sharing.* That is, they coexist as con-sensing and as undergoing
the inexhaustible and sociohistorically-anchored trial to con-sense ever more. In
this respect, the sensus communis — that common sense to which Horace, Vico, and
Lord Shaftesbury would each in their own way later refer as an intesubjectively
self-attuning reservoir of collective understanding — reverberates into Turing’s own
appropriation of the phrase.

And, it is in this denser meaning of “common sense” that the point of contact
I have suggested to obtain between intellectual and cultural searches inheres. That
is to say, these two animating sources of the motility of intelligence coalesce in
the inexhaustible residue of initiative instantiated in an unbounded community of
search. In his explication of the cultural form of search, Turing (1948) expresses
this convergence best,

...the isolated man does not develop any intellectual power. It is necessary for him to
be immersed in an environment of other men, who’s techniques he absorbs for the first
20 years of his life. He may then perhaps do a little research of his own and make a very
few discoveries which are passed on to other men. From this point of view the search for
new techniques must be regarded as carried out by the human community as a whole, rather
than by individuals (1948/2004, p. 431)

This intricated picture of the socioculturally-embedded sources of the “residue
of initiative” enables us, at present, to think with Turing against Turing. For, if the
conditions of possibility of intelligent behavior involve a finitizing compulsion to
limitless search animated exceptionally from within the human community as an
obliged mode of sharing, if such a species-ramifying quest is hence instantiated
in what Karl Jaspers (1953) terms the “challenge to unbounded communication”
(p. 19), it becomes well-nigh impossible to conceive just how such a residue of
initiative, such a living context of relevance, can simply be copied in machines. This,
we might call the animation problem of Al: Insofar as the necessary preconditions
of the animation of intelligence entail an ongoing and forever-provisional public-
process of redeeming reasons amidst living interlocutors compelled collectively to
cope with the predicament of their finitude in light of the thorn of inexhaustibility
simultaneously broken in their discursive skin, intelligence itself, must, in a strict
sense, be an ethical-practical and normative concept. It must be a concept animated
singularly amidst speaking and interacting human beings, who, taken together, are
compelled to assume the conjoint burden of intersubjectively clarifying experience,
and who, taken individually, are compelled to assume responsibility for the unique,
albeit transient, contributions each of them may make thereunto. Intelligence
involves, as John Haugeland (1998) memorably puts it, an “existential commitment”
to the boundless project of understanding (pp. 340ff.), an interminable pledge to take
responsibility in the face of the other for the sake of a greater conspecific whole.

4This occurs in Nicomachean Ethics 1170a28-1171b35. See also (Agamben 2009, pp. 25-38).
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5.3 The Ethical Grammar of Computability

Now, I want to suggest, at this point, that in excavating these implicit moral-practical
underpinnings upon which Turing’s mature notions of “initiative” and ‘“search”
are secured, we are led to something of a remarkable parallelism in Turing’s
thinking writ large. That is, the ethical-pragmatic preconditions of the animation of
intelligence I have been unearthing basically rearticulate some of the core insights
which subtend Turing’s earlier theory of computability and which, as I will argue
shortly, helped to make the latter so convincing and revolutionary.

As is well known, Turing computability erupts onto the mathematical scene of
recursion theory and combinatorial logic as a way out of the cul-de-sac evidently
faced by the thinkers of 36, who were attempting to figure out how to justify
the identification of effective calculability with recursiveness. A more precise and
non-circular picture of this connection promised a clearer definition of the notion
of formal systems as well as of the micro-mechanics of stepwise proof governed
by theorem predicates. For the group of theorist in the trenches of this problem,
the gamut of available logico-deductive methods seemed to have been exhausted,
for, given the pool of meta-theoretical concepts accessible to them at the time,
there appeared to be no convincing way to warrant the placement of recursiveness
restrictions on the inferential steps of effective calculations.

The appearance of Turing’s “On Computable Numbers,” hence heralded nothing
less than a sea change in this fundamental quarter of logic and mathematics,
for Turing introduced a radically pragmaticizing reorientation of the question of
computability itself. Such a reorientation brought the investigation of effective
calculability closer to its own native phenomenon, namely, that of concrete com-
binatory processes as they occur in the activity of human calculating; it therefore
expanded the scope and efficacy of the explication of the nature of computing
at the same time as it deflated the epistemological stretch of the terms of its
explanation. As Robin Gandy (1988) has pointed out, Turing reaches his innovations
in defining effective computability by transposing the ontological question “What
is a computable function?” onto the practical plane of the adverbial question
“What are the possible processes which can be carried out in computing a real
number?” (p. 80). This pragmatic turn from the knowing-what to the knowing how
of calculability consequently prompts a twofold finitization of the very notion of
computation.

First, computational intelligibility is now conceived as factoring down to pro-
cedures of understanding which are concretely operative in embodied thinking
processes. It is characterized, that is, strictly by the practical stepwise application
of a finite number of basic recursive relations or rules to strings of recognizable
symbols. Effective methods of computing are graspable, in this way, solely by means
of the reflexively available mental resources common to all human computors and
are limited by the particular locality and boundedness constraints to which the latter
are subject in virtue of their determinate physical capabilities.
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Secondly, in keeping with this latter aspect of the agentially-situated general-
izability of computation, effective calculability can now be classified as intersub-
jectively compositional. Computations are henceforth to be marked out by their
basic capacity to secure “radical intersubjectivity” (Sieg 2006, p. 205). Stephen
Kleene (1987; 1988) and Douglas Hofstadter (1979/1994) accordingly place this
second intersubjective implication of the pragmatic turn inaugurated by Turing
under the rubric of what they term a “public process version of the Church-Turing
Thesis.”> According to the latter, the method of effective calculability is bound by
the proviso that it can be communicated reliably from one sentient being to another
by means of language, in a finite amount of time, and with complete case-to-case
iterability (Hofstadter 1979/1994, p. 557).

Taken together, these aspects of the agentially-situated generalizability and
the intersubjective compositionality, which underlie all processes of effective
calculation, seem to suggest that Turing’s epochal 1936 insights into mechanical
procedures are, most elementally, insights into the normative character of the
social practice of computing. To be sure, the agentially-situated generalizability
of calculation implicitly secures the authority of each human computor; that
is, it enables individual computors to take responsibility for the assertability of
their claims and to count before one another equally as being entitled to do so.
Correspondingly, the intersubjective compositionality of computation implicitly
secures the accountability of computors to each other. It safeguards that each is held
responsible and is compelled to settle assertoric accounts through the reciprocal
assessment of the soundness and coherence of his or her inferential judgments.®
In view of this primordial entanglement of authority and responsibility at the
site of the social animation of computing, agentially-situated generalizability and
intersubjective compositionality can be seen as ethical-pragmatic presuppositions
of computation as a mode of con-sensing, as a way of semiological sharing. Along
these lines as well, the Church-Turing Thesis can be viewed, in its most basic
aspect, as a rational reconstruction of the ethical-practical preconditions of the
communicatively-instantiated inter-activity of computation.’

5Speciﬁcally in Kleene (1987, pp. 493-494), Kleene (1988, p. 50), and Hofstadter (1979/1994,
556).

5The elemental role of these dimensions of authority and responsibility in the practice of giving
and asking for reasons has been stressed most recently in the writings of Robert Brandom. On his
view, the undertaking of inferentially articulated commitments in dialogical processes of meaning
redemption constitutes the basis of the normative-pragmatics of rational communication. In the
stress he places upon this normative character of the sociality of reason, Brandom writes in a
broadly Kantian-Hegelian heritage and, in so doing, joins the ranks of Humboldt, Peirce, Sellars,
Apel, and Habermas. See especially his (1994), (2000), (2009, pp. 52-77).

"There is, in fact, a third step we must take here to flesh out fully the ethical-pragmatic
preconditions of the social practice of computing, but one to which, in keeping with the scope
of this paper, I can only allude. I want to suggest that, by situating the central limitative claims
set forth by Turing (1936/2004) within the context of the reconstruction of these preconditions I
have been offering, we can begin to discern a largely unrecognized bridging concept that links
the programmatic significance of the Church-Turing Thesis to that of the undecidability results
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This latter acknowledgement of what we might call the ethical grammar of
computability, allows us, I want to argue, to shed a new hue of light on the long
contested issue of the epistemological status of the Church-Turing Thesis. It is
undeniable that Turing’s claims instantly revolutionized the self-understanding of
logic and metamathematics for the thinkers of 36. Church himself maintained at
the time that Turing computability, “has the advantage of making the identification
with effectiveness evident immediately” (1937, p. 43) And, Godel, of course, over
the next three decades would continually sing the praises of Turing’s formulation
as a “precise and unquestionably adequate definition of the general notion of
formal system,”® “an absolute definition of an interesting epistemological notion,
i.e. one not depending on the formalism chosen” (1946/1965, p. 84). Indeed, for
Godel, Turing computability allows both the metamathematical absoluteness claim
of Godel Reckonability and Theorems VI and XI of the incompleteness papers to
be thoroughly clarified and given a completely general expression.

But the issue of just what made Turing’s thesis so immediately evident, unques-
tionably adequate, and hence universally convincing has remained unclear. Notwith-
standing their recognition of the profound expressive ramifications of Turing’s
insights, Godel and Church, for instance, both leave the answer to this question
in almost total obscurity. The so-called “human version” of Church-Turing inspired
by the work of Gandy and fleshed out later by Wilfried Sieg addresses this issue
by viewing the adequacy of the position as emerging from its codification or
idealization of the limited capacities of human calculators. As Sieg (2002) argues,
in examining human mechanical computability, Turing, “exploited limitations of the

Turing achieved in offering his negative answer to the Entscheidungsproblem. As is well-known,
Turing accomplished the latter by, as he put it, correctly applying “the diagonal process” (Turing
1936/2004, p. 72) to what has since come to be known as the halting problem. Once Turing had
established a perspicuous definition of an algorithm under the rubric of his machines, it then
became possible for him, first, to Godelize an enumerable set of the latter by arithmetizing them
and, then, to apply the tool of diagonalization in order to exploit the operative limitations exposed
by the fate of self-referential foundering thereby met in the process of computing. 1t is in this
pragmaticizing “application of the diagonal process” that, I want to suggest, we can identify a third
precondition of the social practice of computing. By resituating the predicament of unsolvability
in the tangible milieu of the human process of calculating, Turing shows that the embodied
computor is always subject to a certain irreducible factor of alterity (instantiated in the iterative
constituents of the anti-diagonal sequence). The latter both determines the absolute limitation of
the finite calculative practice and transgresses that very limitation in virtue of the unincorporability
of the antidiagonal sequence into the diagonal process which delimits that calculative practice as
such. The factically manifesting architectonic of undecidability, which Turing derives therefrom,
can be seen as an enabling condition of the radical openness of mathematical experience, a
condition of possibility of mathematical possibility, if you will. It animates the unbounded
exigency to mathematical communication and operates, in turn, as a precondition of the social
practice of calculating more primitive than intersubjective compositionality and agentially-situated
generalizability inasmuch as these latter two are themselves spurred by the barb of living doubt
emergent from such a predicament of unsolvability per se.

8Godel appended this comment in 1963 to his 1931, “On Formally Undecidable Propositions of
the Principia Mathematica and Related Systems” (Godel 1986, p. 191).
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human computing agent to motivate restrictive conditions” (p. 395). This empirical-
conditioning view, however, falls short of completely achieving the aim of its own
explanatory aspiration, for, inasmuch as it merely re-describes, further elaborates
and axiomatizes how Turing reached his result, it fails to make fully explicit why
it is that that set of empirical restrictions enables us properly to link embodied
computability with the normativity of the proof conditions themselves. That is,
if, as I want to maintain, the restrictive conditions of the proof predicates that
bind effective calculation to recursiveness derive from the normative requirements
effective as ethical-pragmatic preconditions of the social practice of computing, then
“Sieg constraints,” as we might call them, are simply a codification of the concrete
phenomenological milieu wherein those practices subsist and not a justification of
the normative mechanism operating therein.

From an opposite starting point, Saul Kripke (2013) has recently proposed
a reduction of the Church-Turing Thesis to a “special form of mathematical
argument,” specifically, to Hilbertian conditions of stepwise deduction in first-order
logic with identity (p. 80). But, in this reformalizing move, Kripke takes a not-so-
virtuous step back into circularity, for, in attempting to return the Church-Turing
Thesis to the stage of the Godel completeness of first-order logic and thereby to
recast effective computability as a pure form of deducibility, he merely resets the
“stumbling block™ (Sieg 1994, p. 78) Turing had so innovatively kicked away. By
logicians edict, as it were, he posits a domain of mathematical computation cut
away from all-too-human strictures and communicative contexts. And, from the
standpoint of this Kripkean view from nowhere, computability theory is seemingly
consigned to teeter between a Scylla of phenomenological vacuity: “I wish to
exclude questions of empirically or physically based computation... Here we
are talking about mathematical computation, whether done by a human being, or
a machine, or anything else” (2013, p. 89). And a Charybdis of unsupportable
solipsism: “It does not seem to me to be particularly relevant that the directions
[guiding an effective computation] be public, that more than one person is involved.
It suffices that someone give a finite set of directions to herself” (2013, p. 89).

What the almost symmetrically opposing shortfalls of Sieg’s finiteness conditions
and the Kripkean reformalization of “first-order algorithms” show us, I want to
suggest, is a certain explicatory deficit common to both perspectives — one, which
leads us back to the ethical grammar version of the Church-Turing Thesis, now
as a kind of reduction theorem. That is to say, the determinacy, boundedness and
locality conditions distilled in Sieg’s conceptual analysis set restrictive conditions
on the process of effective computability, which are significant on the plane of
justifying the Church-Turing Thesis only insofar as they function to underwrite,
at the descriptive and empirical level, a reconstruction of the ethical-practical
preconditions of computability as a mode of communicating. In the same way,
Kripke’s formalist appeal to the frictionless mechanisms of combinatory rules and
stepwise deducibility can play an equivalent justifying role only to the extent
that they bring light to the normative strictures discharged epistemologically in
the discursive processes of justification and assessment for which mathematical
interlocutors are argumentatively liable and by which they are able to bind others to



5 Machine Intelligence and the Ethical Grammar of Computability 75

the force of the reasons they offer. Both Sieg’s and Kripke’s positions are therefore in
their own respective ways indubitably correct but, on my account, only partially so.

5.4 Conclusion

Let me conclude here by suggesting that, beyond Turing’s innovation, an argument
for the ethical grammar of computability can be derived immanently from within
the extant dialogue surrounding the remarkable confluence of ideas of 1936, for
adumbrations of such a grammar had been implicit in these diverse but converging
articulations from their very beginnings. Hilbert’s program, which played such a
central role in motivating these latter developments, arose as a challenge for finitistic
illumination amidst the darkness of the long shadow cast by the antinomies upon
which the nineteenth century movement toward the arithmetization of analysis had
seemingly run aground. However, it was a challenge that counterintuitively sought
out reflexive resources for the enlightenment to which it aspired exclusively from
within the presupposed procedural parameters set by that same movement. And
herein lies the salient point: The development of arithmetization first spurred by
the critical impetus to rigor gathering in the work of Gauss, Abel and Cauchy and
brought to fruition in the results of Weierstrass, Cantor and Dedekind, heralded a
radical shift away from any argumentative recourse to hazy geometrical or empirical
intuitions.? Per contra, it demanded a move toward the precision of intersubjectively
vindicable eidetic constructions composed entirely of natural numbers and finite
and infinite systems of them. The arithmetization movement hence called for
a shift away from the sorts of characterizations of mathematical objects and
relations that were prone to subjectivist deception and empirical vagary toward the
justificatory sovereignty of integers. This, in turn, prompted the shift to a focus on
the consistency of models of axiomatically delimited notions and formal systems,
which were liable to communicative transmission through pellucid semiological
means. The explosion of axiomization, which would consequently follow, also
triggered growing ambitions to reveal a consistent and purely logical foundation
of the number system — ambitions, in effect, to apply the finitistically-derived and
publically-available transparency of the combinatorial iterability of integers in order
to ground the totality of integers itself. The formal constraints on inferential practice
set by this movement towards arithmetization “all the way down” hence had an
implicit normative character, ab initio, one set in motion by a certain subjacent
ethical-critical pressure to ever more unencumbered and rationally-clarified ways
of eidetic sharing.

Of course, under its logicist and Platonist guises, this totalizing drive to
arithmetization eventually foundered, not in virtue of its critical-finitist impulses

For good overviews of this movement towards arithmetization, see Murawski (1999) and Kleene
(1952/1971).
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towards rigorous analysis and consistent proof, but rather as a result of the very
logical and set-theoretic contradictions it met with its attempts to press the outer-
limits of mathematical comprehending to the comprehensive per se. Both the
paradoxes and the limitative results were discovered, in fact, on account of the
interrogatory momentum and rigor emergent precisely from those critical impulses
themselves. Revealingly, Emil Post writes in 1936 of such an critical compulsion
as a “psychological fidelity,” to “a fundamental discovery in the limitations of
the mathematicizing power of Homo Sapiens,” a discovery, “in need of continual
verification” (1936/1965, p. 291).

The revelation of the antinomies thus in no way dimmed the ethical-practical
beam of illumination strengthening from within the deepening normative character
this particular sort of shared human practice of rigorous consensing even amidst
the stygian shadows of self-reference. In this latter respect, notwithstanding its
weakness for the siren’s call coming from those suspect figures that populated
Cantor’s paradise, the challenge posed by Hilbert’s program can be viewed as an
epistemologically pragmatic challenge to mathematical communication, a challenge
having to do with how, given their application of the finite resources of eidetic
individuals, groupings and basic operators, claimants could bind each other infer-
entially through the conveyable coherence, translucence and public-accessibility of
the axiomatizations and proofs they offered.

With this in mind, it is perhaps easier to see just how the thinkers of *36 cast a
floodlight on the problem of effective computability by bringing it closer to its native
normative-practical locus. As the most elemental form of mathematical reasoning,
calculation is, in Godel’s absolute sense, reckonability. It is, as the double meaning
the English verb “to reckon” indicates, simultaneously a generalizable practice of
iterating, of carrying out a combinatorial process of calculation, and a basic way of
forming a conclusion for which one is discursively liable, of reckoning in a second,
communicatively ramifying sense. It is a way of counting in being held accountable,
a way of reckoning in being subject to a continuous tribunal of the reckoning
of others. In sum, then, inasmuch as the luminosity of the heroic generation of
Turing, the generation of the unsolvable, can hence be seen as deriving from its
insights into the moral-practical animation of the social practice of computing and
the ethical inner-logic of the incompletability of mathematics, it lives on to today as
an Enlightenment that casts no shadows — an Enlightenment not lit from the Platonic
heavens above but one rather illumined from between, amidst living human beings
who speak, interact and calculate together.
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Chapter 6
Is There a Role for Computation in the Enactive
Paradigm?

Carlos F. Brito and Victor X. Marques

Abstract The main contribution of this paper is a naturalized account of the
phenomenon of computation. The key idea for the development of this account
is the identification of the notion of syntactical processing (or information pro-
cessing) with the dynamical evolution of a constrained physical process, based
on the observation that both evolve according to an arbitrary set of rules. This
identification, in turn, revealed that, from the physical point of view, computation
could be understood in terms of the operation of a component subdivided into two
parts, (a) the constrained process and (b) the constraints that control its dynamics,
where the interactions with the rest of the system are mediated by configurational
changes of the constrained process. The immediate consequence of this analysis is
the observation that this notion of computation can be readily integrated into the
enactive paradigm of cognition.

Keywords Enaction * Computation ¢ Syntax ¢ Arbitrariness * Computation *
Varela ¢ Organism ¢ Searle

6.1 Introduction

The enactive paradigm arises as an alternative to the computationalist program
for the cognitive sciences. It emerges at the convergence of the dynamical and
the embodied approaches to cognition, proposing to understand the cognitive
phenomena from a biological perspective, and pointing to the continuity of life
and mind (Varela 1992). From the beginning, the new paradigm shows itself very
critical to what Varela calls “the Gestalt of the computer” — a tendency to see the
computer as a privileged metaphor in terms of which everything else is measured
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(Varela 1979). In opposition to the traditional cognitive sciences, Varela wants to
call attention to the disanalogies between cognition and computation, and between
brains and digital computers. For him, cognition is co-extensive with life and has
to do, not with representing the world, but with maintaining a precarious identity
in the face of a constant lack (of materials and energy) and irritations provoked
by the environment. In living systems, it is crucial to apprehend how material
and energetic flows are constrained in a way to reconstruct the very constraints
that control them. Accordingly, the enactive paradigm insists that cognition must
be understood as an integral part of this circular dynamics of self-maintenance.
Such theoretical compromises naturally lead the enactive paradigm to have a
preference for operational descriptions of a causal nature, instead of the symbolic
and informational descriptions favored by the computationalist approach.

But, there is also a sense in which the living organisms are the first informa-
tional systems in nature. In addition to matter and energy flows, organisms also
process (informational) patterns in order to improve their adaptive relation with the
environment. Recognizing patterns in the environment and using them to modulate
behavior, allow living organisms to be anticipatory systems, which can prepare for
and act upon what has not yet happened (Rosen 1985). As observed by Hopfield,
“Much of the history of evolution can be read as the evolution of systems to
make environmental measurements, make predictions, and generate appropriate
actions” (Hopfield 1994, p. 56). Such systems are physical structures with precisely
ordered constraints, whose sensitivity and specificity make it possible that trivial
physical changes, negligible at the scale of magnitude of the organism (for instance,
a change in the rhythm of an interaction), generate significant consequences for
behavior. Now, it is clear that a description that concentrates on the physical laws
and microscopic details hides the organization of a complex system — which is
then uncovered by a structural abstraction. In a similar way, the emphasis on
operational descriptions does not allow us to see clearly how the behavior of
certain complex systems is organized in terms of the detection and processing of
flows of pattern changes. The alternative here is to switch to a different mode of
description formulated in terms of informational tokens deprived of causal power
and specialized modules that process these tokens. Indeed, Hopfield complements
the observation reproduced above with the following remark: “This is an example
of computation in the sense that the term is generally understood in computer
science”.

The main difficulty in accommodating together the two views of the organism
presented above (and reconciling the corresponding approaches to cognition) resides
in the fact that they are based on two very different modes of description: the so-
called operational mode of description, which explains the behavior or functionality
of a system by producing a “structural abstraction” and then pointing out to the
causal relationships among the components (e.g., consider the typical description of
a machine or an explanation of the bodily functions of an animal); and the so-called
informational mode of description, which explains the behavior or functionality
of a system by producing a “syntactical abstraction” based on representations
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and pointing out to modules that perform manipulations on these abstract entities
(e.g., consider the typical description of a computer program or an explanation
of the cognitive capacities of the brain). So, the problem of the compatibilization
of the enactive paradigm and the computationalist program to cognition hinges
upon the more fundamental problem of the relation between information and
causation.

Our strategy to tackle the problem is based on the formulation of a naturalized
account of the phenomenon of computation, aiming at an approximation with the
descriptive framework of the enactive paradigm. We begin our exposition with a
very brief review of some arguments by Searle and Haugeland on computation,
syntax and physics, which served as the initial motivation for this work. Then,
we introduce a key concept that will be extensively used in our discussion: the
concept of constraint (Pattee 1971; Umerez and Mossio 2013). This concept allows
us to formalize the idea of a physical system in which one part controls the
dynamical evolution of another part. We capture this idea in the form of a simplified
model of an organized physical system: a system of coordinated constraints that
controls the evolution of underlying dynamical processes. On the basis of this
simplified model, we are then able to formulate precise definitions for the notions of
‘structural abstraction’ and ‘syntactic abstraction’ of an organized physical system.
As it turns out, the specification of a syntactical abstraction depends on a choice
that is not forced by the internal structure of the physical system, and reflects
the point of view of an external observer. So, an immediate consequence of our
definitions is the elucidation of the main intuition behind Searle’s arguments in
Searle (1990). The last step towards the naturalization of the phenomenon of
computation consists of the derivation of the notion of informational interaction
from the notion of syntactical abstraction, by substituting an interacting physical
system for the intentional observer. It is important to note that an informational
interaction is a regular physical interaction, with specific characteristics that seem
to capture some key aspects of the operation of informational systems. At this
point, we are finally ready to formulate our naturalized account of computation as
any function performed by a component that relates to the other components of a
larger system (or the environment) exclusively through informational interactions.
Notice that this definition focus on the way through which a computer relates to
the other components of a physical system, and not on its internal organization
or dynamics (e.g., if it is digital or analog). In particular, we are interested in the
sort of interactions that define the notions of input and output to a physical system
(an issue that is taken for granted in most analyses of computation Piccinini 2007,
Scheutz 1999). The final part of the paper is dedicated to the investigation of the
problem of the compatibilization of the enactive paradigm with the concept of
computation, using the notions that have been introduced. We conclude with some
considerations regarding the limitations of the naturalized account of computation
that was proposed, and present some indications about how they could be over-
come.
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6.2 Naturalized Account of Computation

In Searle (1980, 1990) we find several interesting observations about what we mean
when we say that a physical system is a digital computer. Taking the fact that
“[computer] programs are defined purely formally or syntactically” as his starting
point, all the effort by Searle in the chinese room argument is devoted to prove that
“syntax is not the same as, nor is it sufficient for, semantics”. In the later work,
however, Searle moves one step further and claims that “syntax is not intrinsic to
physics” and that “syntax is essentially an observer relative notion”. In this sense,
he argues, a syntactical description cannot be considered an abstraction of a physical
system because something which is not there is added by an external observer.
Accordingly, he gives the following characterization of digital computers: “To find
out if an object is really a digital computer (...) we just have to look for something
that (...) could be used to function as O’s and 1°s” (Searle 1990, p. 6). The point
here is that something is a digital computer because someone assigns a syntactical
interpretation to the purely physical features of the system. This line of reasoning
leads him to such odd conclusions as “for any object there is some description of
that object such that under that description the object is a digital computer” (Searle
1990, p. 7). Such conclusions have stimulated many commentators to analyze his
arguments, most aiming at refuting them.

John Haugeland criticizes Searle’s point of view arguing that his analysis is not
precise enough in the sense that it leaves some essential features of the concept of
computation out (Haugeland 2002). He points out that, besides being describable
in purely syntactical terms, it is also essential to computer programs that “there
must be possible concrete implementations of them”. That is, a physical system
whose causal interactions reliably correspond to the operations on the data that are
prescribed by the program. So, to the extent that these operations correspond to
modifications on concretely implemented data structures, “carrying out operations
must be a causal process”. From these considerations, Haugeland concludes that
the purely syntactical description can indeed be regarded as an abstraction from the
(possibly multiple) concrete implementations of the program. As he puts it: “this is
exactly like the relation between engineering drawings (...) for a pump (...) and
the various possible actualizations of such pumps” (Haugeland 2002).

Actually, these two types of abstraction (the computer program and the engi-
neering drawing) are not identical, and Haugeland introduces yet a third essential
feature of computer programs that allows him to distinguish between them. The
idea is that programs must also be describable semantically. Programs are written
in a general code which permits one to specify (or prescribe) arbitrary operations
to be performed on the data, and the processor (hardware) must be capable of
carrying out whatever operation is prescribed. The general code typically has
a compositional structure, with a semantics associated with individual program
tokens (e.g., terms for arithmetic operations), which are then combined to induce
the semantics of entire expressions. In this sense, the program tokens can be
regarded as symbols — that is, they are meaningful — and Haugeland works to
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make the point that they are meaningful to the processor itself: “the processor
responds to [the program instructions] as prescriptions with those semantics”, and
“The only way that we can make sense of a computer as executing a program
is by understanding its processor as responding to the program prescriptions as
meaningful” (Haugeland 2002). So, the syntactical description of a computational
system (i.e., the program) is incomplete by itself not only because it presupposes
a concrete causal implementation, but also because the semantics of the program
is lacking. Haugeland finally concludes that syntactical descriptions of computer
programs are fundamentally different from engineering drawings of pumps because
the later “do not specify any part of the pump (...) as itself explicitly prescribing
what a second part of it is to do to a third part” (Haugeland 2002).

6.2.1 Constraints and Organized Physical Systems

According to the Encyclopedia of Systems Biology, “constraint refers to a reduction
of the degrees of freedom of the elements of a system exerted by some collection
of elements, or a limitation or bias on the variability or possibilities of change in
the kind of such elements” (Umerez and Mossio 2013). The simplest illustration
of the concept is given by a mechanical physical system where the constraint plays
the role of a boundary condition. For example, the trajectories of the molecules
of a gas inside a container are constrained by the walls of the container. In a
different sort of example, strings joining pairs of balls moving in a billiard table
(or the chemical bonds in a molecule) define rigidity constraints that reduce the
number of dynamical variables in the system and create structure. Finally, catalyzers
accelerating reactions in a chemical solution provide an example of a constraint that
introduces a bias on the possibility of change in the kinds of elements in the system.

This general definition captures a common intuition about constraints as some-
thing that defines boundaries, or extreme points for variation, but does not in
itself determine specific behavior. According to this understanding, behavior is still
governed by the laws and properties of the elementary parts of the system (physical,
chemical or otherwise). But, as indicated further on in the article of the Encyclopedia
(Umerez and Mossio 2013, p. 491), more specific characterizations of the concept
of constraint have been formulated in several domains (Ashby 1958; Pattee 1971;
Polanyi 1968) in attempts to ground explanations using concepts of the physical
sciences.

A brief search in the literature shows that the term constraint is used, somewhat
ambiguously, with several related meanings: sometimes it refers to a material
structure that embodies the constraint, sometimes it refers to the effect of such
structure on the dynamics of the other elements of the system, and sometimes it
is used as a technical term for a tool available to the physicists to produce simpler
explanations or predictions of the behavior of the system. In all cases, however, we
are in the context of an alternative description of a physical system in which we
describe the dynamics of one part of the system constrained by another part which
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is typically held fixed.! In technical terms, this alternative description is obtained
by introducing additional equations of constraint into the usual set of dynamical
equations of the system. As a simple example, when the physicists describe the
experiment of a ball rolling down an inclined plane, they do not consider the
detailed forces of interaction between the ball and the plane, but just introduce a
new equation in their model to enforce that the trajectory of the ball will obey
the constraint (i.e., the inclined plane). This equation, of course, does not take
into account the microscopic details of the particles that compose the plane, but
simply describes a geometric plane at a position that corresponds approximately
to the average position of the surface particles of the actual plane. This selective
omission of degrees of freedom of the system naturally leads to a great simplification
in predictions and explanations.

Still following the Encyclopedia, the notion of constraint is usually employed in
relation to conceptualizations in terms of levels or hierarchies. More specifically, the
concept of constraint is used to give precise expression to the idea of interactions
between different levels of organization. This is an important point for our discus-
sion that deserves further clarification. In the simplest case of artificially constructed
systems, the constraints are typically produced and maintained by processes at
higher levels of organization (e.g., human activity and design), and they affect the
dynamics of the lower level elements of the system in very specific ways. Living
organisms, on the other hand, are autonomous systems in the sense that they produce
their own constraints; that is, the constrained dynamics of the lower level elements
of the system results in the maintenance and replacement of the very constraints that
control this dynamics, in a closed loop. In both cases, the specific structure or form
of a given constraint is not the result of the dynamics of the immediate elements
that it constrains.” In this sense, from the perspective of the constrained lower level
processes, the effect of the constraint on the dynamics corresponds to an arbitrary
external intervention. Finally, if we recall that the constraint is associated with the
dynamics at a higher level of organization, then we get the idea of control.

Now, what is already clear in this picture is that the role of the constraints here
is not anymore simply that of establishing arbitrary limitations to variation, but they
actually participate in the determination of specific behavior. That is, in the context
of control, the dynamics of the lower level elements of the system is effectively
governed both by their specific laws and properties and by the actuation of the
constraints. It is precisely in this sense that M. Polanyi characterized machines and
organisms as dual control systems, and used the suggestive image of constraints
(or, boundary conditions, in his terms) “harnessing the laws of nature” in order to
produce work (Polanyi 1968).

'See Rosen (1986) for a more precise characterization of the modes of description offered by
Newtonian particle mechanics and analytic mechanics, where the concept of constraint was first
introduced.

21t should also be mentioned that, in the more interesting cases, the operation of the constraint,
i.e., the particular way in which the constraint affects the lower level elements, may depend on the
state of those elements at a given moment.
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The natural next step, is to consider physical systems whose detailed state
or configurational dynamics is completely controlled by constraints, and energy
considerations do not enter in the determination of specific behavior. Robert
Rosen (1986) designates such systems as maximally (or totally) constrained systems
and provides a formal characterization for them in terms of non-holonomic con-
straints (i.e., a constraint that removes a velocity degree of freedom, but leaves the
dimensionality of the configurational space unchanged). Due to space limitations,
we cannot reproduce Rosen’s analysis here, but for the purposes of our discussion
the following quotation should suffice: “If we impose the maximal number of
non-holonomic constraints, then the velocity vector is uniquely determined by the
configuration. The result is an autonomous dynamical system, or vector field, on
the configuration space. At this point the impressed forces of conventional analytic
mechanics disappear completely; their only role is to get the system moving.
Once moving, the motion is completely described by the constraints” (Rosen 1986,
p. 112).

Rosen defines the notion of maximally constrained systems in the context of
mathematical models, where the physical systems is defined by the collection of
dynamical variables that appear in the equations. Here, we want to keep the idea
that there is one part of the system (the constraints) that controls the dynamical
evolution of another part (the constrained processes). For this reason, we will make
use of the weaker notion of a system which is maximally constrained only with
respect to a subset of its dynamical variables. That is, the constraints of the system
strictly control the configurational dynamics of a number of variables associated
with the constrained processes of the system.

We summarize the discussion of this section with the definition of a simplified
model of an organized physical system:

Definition 6.1. An organized physical system is a system defined by a number of
higher-level constraints whose coordinated action controls the dynamical behavior
of underlying physical processes inside the system.

6.2.2 Structural and Syntactical Abstractions

It is already well recognized that organized physical systems, such as organisms,
machines, and even some dissipative structures like a candle flame, cannot be prop-
erly described in terms of collections of particles following trajectories governed by
the fundamental laws of physics (Mossio et al. 2009; Polanyi 1968; Rosen 1991;
Varela 1979). Such descriptions completely miss what is most relevant about the
system: its organization. A better description of such systems would present only
the main structures that define their higher-level constraints, as well as the relations
that establish the coordination among those constraints. In this type of structural
or relational description, all the emphasis is placed on the high-level physical
organization of the system.
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Definition 6.2. A structural abstraction of an organized physical system is a
description which presents the structures that define the higher level constraints
of the system, as well as the relations that establish their coordination, but omits
most (or all) the information about the dynamical processes constrained by those
structures.

As we said in the beginning, this is already well understood. What we propose
here is that, under appropriate circumstances, an organized physical system can also
be the object of a syntactical description. The paradigm we shall adopt for syntacti-
cal descriptions is the notion of a computer program. Our basic idea is to associate
the execution of the program with the dynamics of the constrained processes of
the organized physical system. We begin with the observation that the execution of
a computer program corresponds to a sort of flow in which informational elements
are transformed by abstract operations and get involved in abstract relationships (e.g.
comparison). So, the first difficulty that confronts us is the fact that the execution
of the program does not correspond to a flow of energy or matter. What is being
described is a flow of (pattern) changes in time. To make the correspondence work,
then, we will associate the flow of the program (i.e., the computation) with the
changes of configuration suffered by specific dynamical variables associated with
the constrained processes of the organized physical system.

In order to make things concrete, consider the example of the electronic
computer. We usually describe its computation from the point of view of information
processing, using the abstract and more convenient language of numbers and strings
of symbols. However, a computation in the physical device consists of a sequence
of changes of voltage levels at specific locations of the machine, controlled by the
pieces of electronics (constraints) that constitute the hardware. But, perhaps, our
familiarity with the example does not allow us to see the point fully clear. What we
want to say is that, in principle, the “syntactic” point of view is always available
to describe what is going on in an organized physical system. All that is required
is a choice of dynamical variables with respect to which the system is maximally
constrained. Once this choice is fixed, we simply describe how the variables change
in time under the action of the constraints. Since the configurational dynamics is
strictly controlled by the constraints, the description can be provided in the form of
rules that update the configuration of the selected variables.

Definition 6.3. A syntactical abstraction of an organized physical system is a
description that presents the rules that govern the changes of configuration of a
number of selected dynamical variables of the system, as well as the relations that
coordinate the application of these rules, but omits all the information about the
structures (or constraints) that implement the rules and the coordination.

This mode of description is remarkably general. The dynamical variables which
are used to define the syntactical abstraction can be just about anything (water levels,
sound frequencies, spatial configurations of mice and cheese, etc.), as witnessed by
the variety of strange ‘computers’ described in the literature, which were contrived
to illustrate the independence of the phenomenon of computation with respect to the
material substrate (Block 1995).
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6.2.3 Naturalizing the Observer

The discussion in the previous section exposed the objective aspects which are inher-
ent to any syntactical description of an organized physical system: the structural
constraints that implement the rules that appear in the description. Nevertheless,
the analysis also made it clear that there exists a subjective residue that cannot
be eliminated, in the sense that it cannot be accounted for exclusively in terms of
aspects of the system itself: the choice of the dynamical variables whose behavior
is the target of the description. This means that it only makes sense to talk about
syntactical descriptions in the actual presence of an observer that makes this choice.
In other words, to obtain a naturalized account of the phenomena of computation
we must explicitly include the observer in the analysis. In order to do so, we have to
abandon the idea of an observer as an intentional entity which contemplates the
system and eventually produces a description. Instead, we will assume that the
observer is another physical system which engages into a causal interaction with
our original organized system.

The first step that must be taken in order to make the move from description to
interaction is to check whether the language of organized systems can still be used
to describe the interaction between two physical systems. That is, we have to see
if the notions of higher-level constraints, lower-level details, underlying constrained
processes, etc., are not just convenient constructs invoked by an intentional observer
in order to simplify her description. But, the whole point of Sect. 6.2.1 was that the
notion of constraint corresponds to the objective fact that some degrees of freedom
are, for all practical purposes, eliminated from the system due to the presence
of strong forces and/or material structures which are themselves not affected by
the dynamics. This point is at the root of the concept of constraint formulated by
Howard Pattee (1971).

Next, we consider the following question: what sort of interaction corresponds
to a syntactical description? If we denote our original organized physical system by
C (the computer) and denote the system we have just introduced in the story by O
(the observer), then we should expect this to be an interaction between the observer
system O and the constrained processes of the computer system C. But we need
to proceed carefully here. Recall that the role of the observer is just to choose the
dynamical variables whose behavior is the object of the syntactical description. The
rules that govern this behavior should be implemented by the structural constraints
of the computer system. We impose two requirements in order to satisfy these
conditions. First, the interaction between the observer system O and the computer
system C must be mediated by dynamical variables associated with the constrained
processes of the computer component C. That is, the behavior of O should be
sensitive to state changes of these variables but, once this state is fixed, variations of
other aspects associated with C should have no effect on the behavior of O. Second,
the computer system C must be maximally constrained with respect to the variables
thus selected by O.

These requirements have the following important implication: the energy which
is eventually exchanged between the systems C and O is irrelevant from the point
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of view of their interaction. To see this, we just need to recall the definition of a
maximally constrained system, which implies that the configurational dynamics of
the mediating variables is completely determined by the constraints of the computer
system. On the other hand, the observer system is only affected by the configuration
that is produced by the computer system. An evidence that this should indeed be the
case, is confirmed by our familiar experience with electronic computers, where it
doesn’t matter how hard we press the buttons when we type the input. This motivates
us to characterize the interaction between C and O as an informational interaction,
in the sense that the interaction is not to be explained in generally mechanical terms
(i.e., how the two systems push and pull each other).

Definition 6.4. An informational interaction is a causal interaction between a
physical system O and an organized physical system C such that: (a) the inter-
action is mediated by the changes of configuration of a number of dynamical
variables associated with the constrained processes of C; (b) the organized sys-
tem C is maximally constrained with respect to the variables that mediate the
interaction.

6.2.4 Naturalized Computation

In Haugeland (1981), J. Haugeland characterizes a computer as an automatic formal
system. That is, a system defined in terms of a number of rules that change the
configuration of an underlying set of variables, endowed with an intrinsic dynamics
that controls the application of those rules without external interference. It is clear
that this notion can be captured by the developments of the previous sections: (1) the
idea that an organized physical system can be the object of a syntactic description
allows us to view it as a formal system; (2) an interaction mediated by the changes
of configuration of some variables associated with the organized system, defines a
notion of input-output that gives access to the operation of the formal system; (3)
if the organized system is maximally constrained with respect to the variables that
mediate the interaction, then it also possesses the autonomous behavior required by
the notion of automatic formal system. These three conditions are encapsulated in
the definition of informational interaction.

However, the notion of informational interaction places almost no restriction
on the observer system. It just says that there is a causal interaction between the
observer system and the computer system, mediated by the changes of configuration
of some variables associated with C. But, there are many irrelevant ways in which
one physical system can causally affect another one. So, if we do not qualify this
interaction, then we take the risk of postulating that there is computation in many
cases where there is actually not. The obvious idea here is that the interaction with
the computer system C should be relevant for the activity of the observer system.
Indeed, in Haugeland (1981), Haugeland also says that, in addition to being an
automatic formal system, a computer is also a semantic engine. That is, a system
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which somehow relates with the external world, and whose overall behavior and
specific workings can be interpreted or attributed meanings in terms of the objects
and events of this world.

In order to capture this additional aspect of computers, and to avoid the accidental
cases of computation, we introduce the last element of our naturalized account of
computation: (4) the computer system C must have a function in the activity or
operation of the observer system O. Now, with this choice of using the concept
of function we are committing ourselves to talk about computation only in the
contexts in which this sort of teleological discourse applies — that is, the context
of living organisms and their tools — which is quite reasonable. The concept of
function is largely unproblematic in the social and technological context in which
we construct and use our computers. On the other hand, to obtain a more general
notion of computation associated with natural phenomena, we can make use of the
naturalized accounts of functions presented in Mossio et al. (2009) and Bickhard
(2000), according to which a component has a function in the context of the
operation of an autonomous system (i.e., an organism) if the component contributes
to the self-maintaining activity of the system.

Definition 6.5. Computation is any function performed by a component which
relates to the other components of a larger system (or the environment) exclusively
through informational interactions.

6.3 Computation in the Enactive Paradigm

Now, we return to the problem of the compatibilization of the enactive paradigm
with the notion of computation. As we mentioned in the Introduction, the main
difficulty lies in the fact that we tend to understand computation abstractly, in
syntactic terms, while the enactive paradigm is concerned with the embodied
experience of an agent in the world. Actually, this is basic problem of the cognitive
sciences: to deal with the apparent incompatibility between the abstract and the
concrete.

The computationalist approach to cognition proposes to solve the problem by
postulating that the brain processes information received from the sensory organs
and outputs instructions to the body which executes them. However, it has never
been clear how the sensory embodied experience becomes information, and how,
after processing, the information becomes bodily behavior. All the effort was
concentrated on understanding the mechanisms behind the information processing.
The problem presented by the ‘translations’ was relegated to be solved by interfaces,
which were considered unimportant and not at the center of the phenomenon of
cognition. This solution worked well for a while in the Al community, because
in practice the human beings were playing the role of the interfaces: coding the
(relevant) facts of the physical reality into informational tokens, and interpreting the
results of the computation by taking the appropriate actions in the world. Also, in
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very simplified settings, the computer could be put in direct contact with reality, but
here again the problem was solved by a human being, who designed the appropriate
interfaces. Soon it became clear that there was an important difficulty here.

The solution offered by the enactive approach consists of leaving computation
out and interpreting the immediate interactions of the living cell with the elements
of its environment, through adaptive mechanisms, as cognition (Varela 1992). The
paradigmatic example is given by the bacteria swimming up a sucrose gradient.
To understand the example it is important to note the distinction between the
environment as it appears to an observer and without reference to an autonomous
unity, and the environment for the living system. The molecule of sucrose only
acquires significance (meaning) as food in the presence of the autopoietic activity
of the bacteria, which makes use of this molecule to continue its process of self-
maintenance. Varela calls this a surplus of significance, created by “the presence
and perspective of the bacteria as a totality”, and he claims that this is the mother
of intentionality. It is important to call attention to the two components of this
definition. The first is the fact that the specific meaning acquired by the molecule
of sucrose (i.e., food) is determined by the particular way in which the molecule
is integrated in the autopoietic (and adaptive) activity of the bacteria. The second
component is the fact that this activity is a manifestation of an autonomous entity,
so the attribution of meaning is not something that depends on the judgement of
an external observer. Here, it is useful to quote Varela again: “what is meaningful
for an organism is precisely given by its constitution as a distributed process, with
an indissociable link between local processes where an interaction occur, and the
coordinated entity which is the autopoietic unity” and “this permanent relentless
action (...) becomes, from the observer side, the ongoing cognitive activity of the
system” (Varela 1992, p. 8).

However, Moreno et al. (1992) highlight an important difference between
purely adaptive systems and properly cognitive ones. They say that while “onto-
genetic adaptation ensures, through perception, the functional correlation between
metabolic-motor states and states of the environment” (Moreno et al. 1992, p. 66),
cognition is related to learning, memory and anticipatory behavior, and those involve
“the capacity (...) to change, in somatic time, the very structure of the system that
correlates sensors and motors” (Moreno et al. 1992, p. 68). This observation exposes
a serious limitation of the enactive approach to explain higher level cognition:
according to the enactivism, the meaning of an element is associated with the way
through which it is integrated in the autopoietic and adaptive activity of the living
system, but this is not something easy to change (or create) in somatic time — think of
the intricate network of relations which underlies the metabolic activity of the living
cell. Here, the notions of information and computation become very attractive — by
the usual definition, computation is a process of manipulation and transformation
of information. So, if the living system acquires the capacity of performing
computation, then the problem of cognition is solved (from the biological point
of view). Indeed, Moreno et al. associate cognition with “a specialized subsystem
continuously reconstructing patterns that are functional or referentially correlated



6 Is There a Role for Computation in the Enactive Paradigm? 91

with changes in the environment” (Moreno et al. 1992, p. 67). But this brings back
all the problems associated with the computationalist approach to cognition, and
again they are relegated to be solved by appropriate (but unspecified) interfaces,
as is clear from the following passage “in cognitive organisms, the physical
patterns impinging on sensors are translated in trains of discrete sequences that
modify the dynamics of a network of information processing” (Moreno et al. 1992,
p. 67).

We learn two things from this discussion: (1) that it is possible to formulate a con-
sistent naturalized account of meaning and cognition in the context of the activity
of an autonomous system, as long as only mechanical and chemical interactions are
involved; and (2) that we cannot dispense with some notion of information and/or
computation if we want to keep the goal of explaining higher level cognition. The
problem is how to accommodate the notion of information/computation and the
notion of purely natural systems in the same explanation. This difficulty is well
synthesized by Searle when he exclaims that “syntax has no causal powers”. Here is
the place where we can apply the insights of our naturalized account of computation.

The first thing to note is that there is no difficulty in extending the enactive
account of meaning and cognition to the situation of an autonomous system with
a component that performs computation, as defined in Sect.6.2.4. To see this,
consider an autonomous system O with a computer component C that: (a) has a
function in the self-maintaining activity of O; (b) relates to the other components
exclusively through informational interactions. Here, we recall that an informational
interaction is just a specific form of causal interaction between physical systems.
This means that we can understand the operation of the autonomous system O in
terms of the causal relationships that hold among its components. Moreover, by
focusing on the structural constraints of the computer component, we see that they
are coordinated with the constraints of the other components and, in this way, they
contribute to control the behavior of the autonomous system. The only specificity
here is that this coordination is established through the precise manipulation of
the configuration of a number of dynamical variables. From this perspective, we
can see that there is nothing going on in this system that does not happen in the
living cell — no “vaporous” notion of information (Varela 1997, p. 79) affecting the
physical workings of the system. So, the enactive account of meaning also holds in
the context of the mechanical, chemical and information interactions (as defined in
Sect. 6.2.3) of an autonomous system.

On the other hand, we can also focus our attention on the constrained processes
of the component C, and more specifically on the set of variables X that mediate
the informational interactions between C and the other components of O. Then, we
observe that the component C accomplishes its function by setting the variables
X to specific configurations. Hence, it makes sense to interpret the variables X
and their particular configurations in terms of the function performed by C. For
example, if C has a regulatory function in the self-maintaining activity of O, then
the configuration of the variables X before the interaction would be interpreted as
an indication of some specific event or state of the autonomous system O, and the
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configurations produced by the component C would be interpreted as instructions
for other components to take appropriate actions. Next, we recall that C is maximally
constrained with respect to the variables X. This means that the dynamics of changes
of configuration of the variables X is strictly controlled by the constraints of the
component C and, in this sense, it can be described as governed by a set of arbitrary
rules. In other words, we can explain how the component C performs its function
in syntactical terms. So, from this perspective, it is reasonable to say that the
component C is doing computation, in the usual sense of the term.

Returning to the issue of higher-level cognition, Moreno and Lasa (2003) again
associate it with a specialized subsystem which is now qualified as informational
and dynamically decoupled from general metabolic processes. The subsystem which
they have in mind is the nervous system and what makes it special are the two
forementioned properties. The phenomenon of decoupling is explained as follows:
a part of the system constitutes a new level of interactions which operates according
to a set of arbitrary rules independent of the dynamics of the lower level (the
remaining system); (b) both levels become causally connected and depend on each
other. On the other hand, they give the following reasons to qualify the activity of
the nervous system as informational: (a) neural states can switch body states by
configurational rather than energetic means; (b) being dynamically decoupled from
metabolic processes, these configurations can recursively operate on themselves,
producing a kind of “formal processing”.

This description is very close to our naturalized account of computation, but we
want to call attention to an important difference. When Moreno and Lasa talk about
a part of the system which operates according to a set of independent rules, where
configurations recursively operate on themselves, they seem to be referring to (in
our terms) the constrained processes of the computer component. However, they do
not mention the constraints that control these processes — actually, they do not make
an explicit distinction between the two parts of the computer component. Now, what
becomes clear from our analysis is that the set of independent rules that governs the
computation does not correspond to the intrinsic laws and properties of the elements
of the constrained process and their particular configurations. These rules reflect the
specific and arbitrary action of the structural constraints of the computer component.
In other words, the configurations do not operate on themselves, but they are
operated upon according to rules that are physically implemented by constraints.
So, an adequate naturalization of the concept of computation should present the
computer component not only as dynamically decoupled from its surroundings
and operating on configurations, but also as subdivided in two levels: (a) a lower
level whose dynamics is described by arbitrary rules that modify an underlying
configuration, and which is the part of the subsystem that is (directly) causally
connected to the rest of the system; (b) an upper-level which consists of the
constraints that physically control the dynamics of the lower level. Now, the puzzle
of the causal power of syntactic entities arises from the fact that the descriptions
of informational systems typically present the part (a) above but omit the part (b).
When the part (b) is also presented, the puzzle disappears.
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6.4 Conclusion

The main contribution of this paper is a naturalized account of the phenomenon of
computation. The key idea for the development of this account was the identification
of the notion of syntactical processing (or information processing) with the dynam-
ical evolution of a constrained physical process, based on the observation that both
evolve according to an arbitrary set of rules. This identification, in turn, revealed
that, from the physical point of view, computation could be understood in terms of
the operation of a component subdivided into two parts, (a) the constrained process
and (b) the constraints that control its dynamics, where the interactions with the rest
of the system are mediated by configurational changes of the constrained process.
Now, once we have such an operational characterization of computation, it is an
easy step to show that it can be incorporated into the enactive account of cognition.

On the other hand, it is clear that this account captures only one aspect of our
usual concept of computation: the peculiar way in which computers relate to the
other components of a larger system. Perhaps it may be argued that this is the
relevant aspect to capture if we are interested in natural mechanisms of computation,
which may not share the structural organization of the digital computer. In any case,
there are two limitations of the present account that we believe could be overcome
using ideas related to the ones presented here. The first one has to do with the fact
that we did not say anything about how a component can perform a function in a
physical system by a mere rearrangement of the configuration of some dynamical
variables. The second one is related to the common intuition that computation is
essentially connected with the manipulation of discrete symbols, a point that we
also did not touch. Both of these issues could be addressed through a naturalized
account of the concept of information, and again the main tool to develop it would
be the concept of constraint.
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Chapter 7
Natural Recursion Doesn’t Work That Way:
Automata in Planning and Syntax

Cem Bozsahin

Abstract Natural recursion in syntax is recursion by linguistic value, which is
not syntactic in nature but semantic. Syntax-specific recursion is not recursion
by name as the term is understood in theoretical computer science. Recursion by
name is probably not natural because of its infinite typeability. Natural recursion, or
recursion by value, is not species-specific. Human recursion is not syntax-specific.
The values on which it operates are most likely domain-specific, including those for
syntax. Syntax seems to require no more (and no less) than the resource management
mechanisms of an embedded push-down automaton (EPDA). We can conceive
EPDA as a common automata-theoretic substrate for syntax, collaborative planning,
i-intentions, and we-intentions. They manifest the same kind of dependencies.
Therefore, syntactic uniqueness arguments for human behavior can be better
explained if we conceive automata-constrained recursion as the most unique human
capacity for cognitive processes.

Keywords Recursion ¢ Syntax ¢ Planning ¢ Mind and computation

7.1 Introduction

One aspect of theoretical computer science that is useful in Al and cognitive
science is in making ideas about computing explicit, independent of whether we
are computationalist, cognitivist, connectionist, dynamicist, or an agnostic modeler.

One such concept in need of disambiguated use in cognitive science and linguis-
tics is recursion. A one-time conference was dedicated solely to the discussion of
the role of recursion in language and cognition (Speas and Roeper 2009). Current
work touches on several issues addressed there, such as its role in planning and
syntax, and on lack of recursion in the lexicon (which is only true for a certain kind
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of recursion). The critical issue, I believe, is lack of agreement in what we think we
are observing in the processes that are called recursive.

The need for agreement arises because very strong empirical claims have been
made about recursion’s role and its mechanism, such as that of Hauser et al. (2002)
and Fitch et al. (2005), where syntactic recursion is considered the most unique
human capacity, the so-called core computational mechanism in “narrow syntax.”
The claim follows Chomsky’s recent theorizing, in particular the Minimalist
Program (Chomsky 1995, 2005), which puts a recursive/cyclic merger at its core,
not only as a theoretical device but also as an operation of the mind.

We can conceive this syntax-based (and language-centered) argument about
cognition in at least two ways. In its first sense we can take the phrase syntactic
recursion to mean recursion in syntax, which seems to be everybody’s assumption,’
therefore not expected to be problematic. In the second sense we can take it to mean
reentrant piece of knowledge, known as recursion by name (or label) in computer
science.” As will be evident shortly, these two aspects are not the same when we
take formal semantics and formal definitions of recursion into account.

The current paper aims to show that either conception of syntactic recursion
poses problems for the narrow claim of narrow syntax, and to the so-called gen-
erative enterprise (Huybregts and van Riemsdijk 1982), which claim that syntactic
recursion is the unique human capacity. The most uniquely human capacity may
be recursion of a certain kind, but it is not limited to recursion in syntax, and it is
certainly not syntactic recursion in the second sense above, therefore the conjecture
of Chomsky and his colleagues is probably too strong and premature.

The following arguments are made in the paper. The last point is raised as a
question. Some of these arguments are quite well-known. I will be explicit about
them in the text.

(1) a. Natural recursion in syntax, or recursion by linguistic value, is not syntactic
in nature but semantic.

'All but one, that is. Everett (2005) argues that recursion is not a fact for all languages. That may
be true, but the fact remains that some languages do have it, and all languages are equally likely
to be acquirable. See Nevins et al. (2009) and Bozsahin (2012) for some criticism of Everett,
and his response to some of the criticisms (Everett 2009). Even when syntactic recursion is not
attested, there seems little doubt that semantic recursion, or recursion by value, is common for all
humans, e.g. the ability to think where thinker is agent and thinkee is another thought of same type,
manifested in English with complement clauses such as [ think she thinks you like me. But, it can
be expressed nonrecursively as well: You like me. That’s what she thinks. That’s what I think. We
shall have a closer look at such syntactic, semantic and anaphoric differences in recursive thoughts.

2The name is apt because, as lambda-calculus has shown us, reentrant knowledge can be captured
without names if we want to, and that the solution comes with a price (more on that later). In
current work, the term recursion by name (or label) is taken in its technical sense in computer
science. Confusion will arise when we see the same term in linguistics, for example most recently
in Chomsky (2013), where use of the same label in a recursive merger refers to the term ‘label’ in
a different sense, to occurrence of a value.
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b. Syntax-specific recursion is not recursion by name as the term is understood
in Al and theoretical computer science.

c. Recursion by name is probably not natural.

d. Natural recursion, or recursion by value, is not species-specific.

e. Human recursion is not syntax-specific, although the values it operates on
are most likely domain-specific, including those for syntax.

f. Syntax seems to require no more (and no less) than the resource manage-
ment mechanisms of an embedded push-down automaton (EPDA).

g. We can conceive EPDA as a common automata-theoretic substrate for syn-
tax, collaborative planning, i-intentions, and we-intentions (Searle 1990).

h. The most unique human capacity appears to be the use of recursion with
a stack of stacks. Arguments from evolution are needed to see whether
planning, syntax or something else might emerge as its first manifestation.

7.2 Recursion by Value Is Semantics with a Syntactic Label

The kind of recursion manifested in language is exemplified in (2), where a sentence
(S) contains another sentence as a complement.

2 S
NP VP
| /\
Barry % 3
I
knows

Harry knows Bobby

It can be applied unboundedly: I think you think Barry knows Harry knows
Bobby, etc. The natural capture of this behavior in linguistics is by drawing trees, as
above.

It is the property of a class of verbs such as think, know, ask, claim that they take
such complements. This behavior is constrained by language-particular syntactic
properties interacting in complex ways with the argument structure (i.e. semantics)
of the event/action/state denoted by the predicate.> For example, the English verb
hit cannot take such complements: *John hits (that) Barry drags Bobby.

Recursion is possible in the nominal domain as well. For example, a fragment of
John’s book’s cover’s colour is shown below.

3Some comprehensive attempts in linguistics in accounting for the interaction are Grimshaw
(1990), Manning (1996), and Hale and Keyser (2002).
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3) NP
N

NPs
|
NP/\, cover
"~ S

NPs N

\
N/Pj book
| s

John

All the grammatical examples above are recursion by value, where another
instance (i.e. value) of a predicate is taken as an argument of the predicate. For
example, know takes a knower and a knowee, and the knowee is another predicate:
there are two acts of knowing in (2), not one, as the use of same label might
suggest, and by two different subjects. The same observations apply to two different
possessors and their possession in (3).

The constraints on syntactic values—a better term might be syntacticized
values—such as S and NPs are semantic in nature, as the distinction between know
and hit shows. The same can be said about the possessive construction: it needs the
syntactic correlate of a participant and a property or another participant.

7.3 Syntax-Specific Recursion Is Not Recursion by Name

It follows that the structure below cannot be the right one for Barry knows Harry
knows Bobby; compare it with the one in (2). In this interpretation, Harry knows
Bobby would be the base case of recursion by name, as shown separately.

4) S
A~
1\|IP VP
Barry Vl S

knows

Harry knows Bobby

There is one knower in this structure, and one knowee, but, unlike (2), it points
back to the root predicate-argument structure of the word know. Both must be
repeated at every iteration until the base case (the nonrecursive case written on
the right) applies to stop the recursion, giving rise to examples such as Barry knows
Barry knows Barry knows Harry knows Bobby.

It would be tempting to think of this structure as a generalization of (2), by
which we would assume (2) to be the base case of (4) without recursion: Barry
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knows Harry knows Bobby. However, this proposal could not adequately capture
the speaker’s intuition, that knower can know a knowee, and that, from this she
would not infer that knowee’s knower must be the same as the knower next level
up if multiple embeddings are involved. Neither would she conclude that knower’s
knowee must be the same predicate until recursion stops, for example Barry knows
John claims Harry knows Bobby, which is not captured by (4).

It is precisely for this reason that Lexicalized Tree-Adjoining Grammar (LTAG;
Joshi and Schabes 1992) represents the reentrancy implied by (2) not as (4) but as
an S tree dominating another S tree, one with a special operation of adjunction
rather than substitution. Because it is another tree, LTAG captures the right
semantics of (2). Generative grammar assumes two trees as well, but makes no such
combinatory distinction. Therefore, it is susceptible to recursion by name vs. value
arguments. Lobina and Garcia-Albea (2009) suggest ‘merge’ is closure and only
‘move’ is recursive. The narrower claim here is that any natural recursion must be
by value.

The structure in (4) is precisely what is called recursion by name in computer
science, considered to be a special form of reentrancy. As the preceding argument
shows, it is not the same as recursion by value.

‘We can have a look at formal definitions of recursion, and also at some recursive
definitions, to see what is at stake in deciding what kind of recursion is involved.

Below are two different definitions of a potentially recursive data structure, the
tree, from Knuth (1968: 314).

(5) a. Tree: (i) a node called root is a tree, denoted as T(root). (ii) The subtrees of
atree T, T(Ty, Ty, - - - T,,), are partitioned into T}, 1>, - - - T;,,, where each T; is
a tree.
b. Tree: Any tree is a collection of nested sets. A collection of non-empty sets
is nested if, given any pair X, Y of the sets, either X C Y or X O Y or X and
Y are disjoint.

The first one is a recursive definition. The second one is not. Knuth shows that
they are extensionally equivalent. This is a sign that a definition using recursion by
name such as (5a) can be avoided if it is not truly necessary.

It may not be necessary, but is it adequate? The answer depends on what
we are studying. One striking discovery in mathematics was that recursion by
name (reentrancy) can be written without names or labels, using for example
paradoxical or fixpoint combinators. If we define the combinators as (6a-b), we
get the characteristic equation of recursive behavior in (6¢—d).

© a Y Ean0xhx0) Ok x) Curry and Feys (1958)

b. U < (ladyy(eny) (Aaky.y(xey)) Turing (1937)
c. Yh=h(Yh) =h(h(Yh) =
d. Uh = h (Uh) = h (h (Uh)) = ---

Notice that neither Y nor U are recursive definitions, yet they capture recursion
by name. (Incidentally, this is the foundation for compiling functional programming
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languages, almost all of which are based on lambda calculus. They are all Turing-
complete because of this reason.)

The conversion from reentrant (named) recursion to nameless recursion is quite
instructive about the powers of recursion by name. Consider the recursive definition
of Fibonacci numbers in (7a). It is shown in one piece in (7b), which is then turned
into nameless recursion by a series of equivalences in (7c). Notice that % is not
recursive by name (f is now a bound variable, which in principle can be eliminated).
Its recursion is handled by Y.

(7) a. fib(n) = fib(n—1) + fib(n—2) fib(0) =0,fib(1) =1
b. Let fib = An.if (n == 0) Oelse if (n == 1) 1 else fib(n—1) + fib(n—2)
c. Let h = MAnif(n == 0) Oelseif (n == 1) lelsef(n—1) + f(n—2)
Then fib = h fib because fib n = h fib n, Yn > 0, and fib = Yh because
fibn =Yhn,Vn, and Yx = x(Yx), Vx

But this solution comes with a price. Y and U are not finitely typeable, therefore
their solution space cannot be enumerated. Function £ is finitely typeable, but fib is
not just & but YA, which is not finitely typeable.

This result seems to fly in the face of the fact that know-, think-like verbs, and
possession-like predicates, are lexical items, therefore they must be finitely typeable
and representable. In other words, capturing the meaning of know by the formula
Yknow' or Uknow', where know’ is the meaning of know, could not stand in for
the native speaker’s understanding of know. Therefore, it is not adequate to use
recursion by name in any form to represent competent knowledge of words. Because
that kind of knowledge in words is the building block of meaning for syntactic trees,
where the meaning of a phrase is combined from the meaning of the parts and the
way they are combined, it is not adequate to use recursion by name for syntactic
trees of natural strings of words either.

In summary, we have two kinds of evidence that recursion in syntax is not
recursion by name, or recursive reentrancy. One is theoretical, as just seen. The
other one is empirical, as argued after the example in (4).

7.4 Recursion by Name Is Probably Not Natural

Is recursion by name good for anything? It is indeed. The point is slightly tangential
to the purpose of current work, but it allows us to see that in places where recursion
by name is necessary and adequate, it is difficult to see a natural phenomenon.

One such domain is programming. With the exception of Fibonacci, the examples
we have seen so far are all peripheral recursion, i.e. the recursive value appears
on the edge of a tree, which then reiterates, branching on the right edge (2), or
the left (3). However, nontail or nonperipheral recursion is possible, and it is not
reducible to traversing one periphery of a tree. For example, the pseudo-code below
traverses a tree in what is called ‘in-order’:
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visit (tree) :
if tree is not nil:
vigit (tree.left)
print (tree.root)
visit (tree.right)
end

Theory of compiling has shown that we can indeed eliminate such recursion
altogether as well, but at the expense of manipulating an auxiliary stack for
every nonperipheral use of recursion. Such solutions also need elaborate run-time
mechanisms to keep track of sequence of computations. It will be clear later that this
is fundamentally different than managing an auxiliary stack once, per rule, which
seems to have natural counterparts.

Thus we either face elimination of recursion by name by fixpoint combinators,
which are not finitely typeable, or its elimination by auxiliary devices where every
recursive call needs extra stack management. None of these seems to be a natural
mechanism.

It is also worth noting the semantics of recursion in programming:

®) o reduces to o

PN Q
Y h h

We can see the pseudo-code above as a realization of this syntax and semantics,
applied twice. Notice the identity of the general mechanism (8) to the structure we
considered to be inadequate for natural language recursion, shown in (4). Unlike
natural resources such as words, a piece of code can be reentrant; it can point back
to its root (and note that the pseudo-code itself is finitely representable), with the
understanding that auxiliary mechanisms (such as activation records of recursive
calls) and other conventions take care of the rest. None of these mechanisms or their
functional equivalent have been attested in cognition, in language, vision, planning,
music, or reasoning.

7.5 Recursion by Value Is Not Species-Specific

We can now assume that natural recursion is recursion by value. Given this
conception, it is not difficult to see rudiments of recursion in close cousins of ours
(if not in other higher animals), especially in planning.

Planning has a long history in AI; see e.g. Ghallab et al. (2004) for an
extensive coverage of techniques and tools. Collaborative plans and their relation to
psychological states have been extensively studied too; see for example Lochbaum
(1998), Bratman (1992), Petrick and Bacchus (2002), Steedman and Petrick (2007),
Grosz and Kraus (1993), and Grosz et al. (1999).
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The field has devised ingenious ways to capture the act and knowledge of plans as
states, search, knowledge representation, and inference. For our purposes, it seems
convenient to classify planning in an automata-theoretic way, independent of the
aspects above, to highlight its close ties to language.

From this perspective, we can conceive plans at three levels of resource manage-
ment (with automata-theoretic substrates in parentheses):

(9) a. Reactive planning (finite-state automata—FSA)
b. Instrumental planning (push-down automata—PDA)
c. Collaborative planning (embedded PDA—EPDA)

Finite-state plans deliver whatever organization can be afforded by a finite history
and non-embedded behavior. This is not much; for example we cannot capture a
scenario where separate actions of an agent match step by step, or a case where a
step of the plan needs the result of another plan, either by the same planner or by
someone else.

We can model such organized behavior to some extent with PDAs. An example
from Jaynes in animal cognition is on the mark (he used it to show deceit as a
form of animal consciousness): Jaynes (1976: 219) reports of a chimpanzee in
captivity filling his mouth with water in order to penalize a not-so-friendly keeper.
The chimpanzee coaxes the keeper, and tries to lure him to proximity to spit water in
his face. Sometimes the plan fails, and we would expect the chimpanzee not to spit
water. (He might spit water, but not for that purpose. Spit therefore means something
more as part of a plan.) His actions depend on how much the keeper conforms to his
role as part of the chimpanzee’s plan. In this sense it is instrumental planning.

It is worth formalizing some aspects of this planned action to see that at this level
of instrumentalizing we are dealing with context-free agent-centered dependencies.
Below is a context-free grammar on behalf of the chimpanzee for some potential
ways to get what he wants.

(10) S —  FillWater LureKeeper Spit
LureKeeper — Coax | Hail
Coax —  Stalk Coax | AskBanana

Spitting depends on achieving LureKeeper, which might enter the chimpanzee’s
plan by perceiving and interpreting the actions of the keeper. If coaxing him fails,
we might still have some acts of stalking the keeper by the chimpanzee, but they
would presumably not amount to a plan of spitting at him. This is a dependency
that—Ilet’s say—he himself established as part of the plan.

From an external observer’s point of view the plan-action sequences suggested
by this grammar may appear to be finite-state, and indeed this grammar captures a
finite-state (regular) language. From the chimpanzee’s point of view, it is context-
free. I will not extend this way of thinking to suggest that chimpanzees (and bonobos
and gorillas) are capable of devising grammars that are strictly context-free from
both the observer’s and the planner’s point of view, but the distinction remains that,
unlike reactive planning, an instrumental grammar can be context-free in some way.
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This way of thinking coincides with a change of mind in cognitive science.
Tomasello and Call (1997) had argued earlier that chimpanzees don’t have a mind,
but they changed their position in Tomasello et al. (2003), where the finding is that
they might have a mind. Crucially, it depends on being aware of other agents, and
of potential results that might suggest alternate courses of action if the other agents’
actions do not meet the expectations of the concerned chimpanzee from them. This
is semantic recursion, or recursion by value, and it is instrumental.

It is sometimes suggested that strict context-freeness and nontrivial recursion
can be observed in birdsong as well, in the sense that they sing phrases that seem to
consist of subphrases, in one claim to the extent of beyond context-freeness (Stabler
2013). It is not clear to me that we are facing semantic recursion here, because it is
not clear that this is not a phonological skill (Berwick et al. 2011, 2013). For it to be
semantically compositional the internal phrases must have semantics all the way up,
which would indeed be recursion by value. Birdsong might have global semantics,
such as happiness, gathering, etc., or make use of very simple rules (Van Heijningen
et al. 2009).

7.6 Human Recursion

Auvailability of other kinds of recursion in humans is not contested by Hauser et al.
(2002) and Fitch et al. (2005).* They acknowledge that spatial reasoning, among
other things, is recursive as well, for example ((((the hole) in the tree) in the
glade) by the stream), from Fitch et al. (2005). But, once we have a closer look
at nonsyntactic recursion, and subsequently at its striking computational similarity
to language (Sect. 7.6.2), the Chomskyan argument that what makes syntax unique
to humans—which I do not dispute—is recursion in it, weakens. A certain kind of
recursion may be the most unique human capacity.

As we have seen in Sect. 7.5, instrumental planning can be taken for granted for
humans. For a single agent not collaborating with anyone, but perhaps interacting
with others, it is easy to see what Searle (1990) called i-intentions, for example
scurrying in the park because of rain, to use an example of Searle’s. Everyone in
the park might target the same shelter, but these would not be we-intentions but
a collection of i-intentions. A collection of i-intentions does not constitute a we-
intention, Searle claims. This makes perfect sense when we consider dancing in
the rain, which might involve the same set of movements as scurrying in the rain
from an external observer’s point of view, but we know a collaborative dance when
we see one, as a collective intention, therefore behavioral equivalence is not the
right criterion. Even if a dancer makes a mistake, we would not equate that with an
independent act such as someone failing to reach shelter.

4See Jackendoff and Pinker (2005) and Parker (2006) for counterarguments on evolutionary basis
of syntactic recursion.



104 C. Bozsahin

The point of collaborative planning and action is that a collection of individuals
may intend to pursue a common goal, although they may serve it by different courses
of action. In American football, another of Searle’s examples, a quarterback and a
runningback may have the same intent and execute the same plan, while carrying
out different actions.

We can formally incorporate i-intentions, we-intentions, i-plans, and we-plans.
Consider the following grammars as proxies for modeling such behavior arising
from an internal mechanism. Let us assume extensionally identical (or equivalent)
behavior, i.e. dancing and scurrying involve the same actions and are distinguishable
only by the intent. The first grammar below is meant for i-intentions and i-plans, and
the second one for we-intentions, we-plans, and i-actions.

(11) S; — o; | A; where o; is a plan with a base case A; (Scurry in rain grammar)
Ay — run, and do S;’s work

A, — run,anddo S,’s work

(12) S; —  Si[7{S1....S,}] 7 x:an ordering of set x (Dance in rain grammar)

SIS/ — run
and do S;’s work A;

Here is my convention: the grammars are individuated per person i, with the
start symbol S;. We-intentions first make a note of the ‘we’, using the first rule
in (12). In principle it can be of indeterminate number. These rules make use of
the Linear-Indexed Grammar (LIG) convention (and the choice is not accidental; cf.
subsequent sections). The stack associated with a nonterminal B is denoted [x. . .]
after B, where x is the top. What can enter a stack is planner’s decision. Plans and
intentions are the righthand sides of rules. Actions and assumptions (or knowledge
states) are members of the righthand sides; o and B stand in for contextualizing
a participant’s action with others, to be differentiated from her own actions, A;,
but related to it structurally, as the unfolding of the mechanism exemplifies for
participant k in Fig.7.1.5

5T am not suggesting that (12) is the universal schema for all plans. It is meant to show that
collaborative plans may be LIG-serializable. LIG-plan space remains to be worked out. For
example, base cases of individuated grammars, the S;[S;] rules, doing running—as part of a dance—
and A; would be by definition LIG-serializable too, but in a manner different than what « and j
are intended to capture, viz. contextualized knowledge states of the group constituting the we-
intention. A;s may be LIG-realized action sequences, making the whole collection a we-plan.
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Fig. 7.1 Participant k’s Sk
grammar for collaborative
dancing in the rain SISt Si]
o Sl Sa- .- Si P
[05) S,f, [S3 e Sk] Bz
I
SilSi]

run, and do self’s work, A4

Therefore, every participant can go her own way of carrying out the plan,
symbolized by the base cases of her own grammar (the “S;[S;]’ rules), but not
behaving incognizant of the overall plan, symbolized by the top rule, or impervious
to other participants’ plans and actions, symbolized by the left and right contexts of
her own actions/states at the bottom.

If somebody’s participation goes wrong, say p’s, another participant would
know this by observing the failure of S, for the participant, and recovery may be
attempted. (Therefore we assume that the grammar is solving a hidden-variable
problem, where it is couched between perception and inference from the world,
under the guidance of LIG-automata providing the search space. Zettlemoyer and
Collins (2005) started explicit modeling of acquisition of this nature for the case of
language.)

No such mechanism is manifest in an instrumental plan such as (11). Thus we
can representationally distinguish we-intentions from i-intentions.

7.6.1 Embedded Push-Down Automata for Syntactic Recursion

It has been known since the work of Shieber (1985) that human languages are not
context-free. (Most of the earlier proofs turned out to be problematic. Shieber’s
proof is the one everyone accepts.) The emerging formal characteristics that are
adequate for natural languages are summed up in the mild context-sensitivity
hypothesis of Joshi (1985): constant growth of string length, i.e. incremental build-
up, polynomial parsability, limited cross-serial dependencies, and proper inclusion
of context-freeness.
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Omdat Tk Henk Peter zag helpen zwemmen

‘because I saw Henk help Peter swim ...”

Cross-serial dependencies are the most challenging automata-theoretic aspect to
context-freeness. PDAs cannot handle the Dutch dependencies shown above.

However, not all cross-serial dependencies are mildly context-sensitive.
Although there are mildly context-sensitive grammars for {a"b"c" | n > 0}, which
is strictly not context-free, there are no such grammars for {www | w € {a, b, c}*},
or for {w | w € {a,b,c}* and |w|,=|w|p=|W|}.

The last one, called MIX, symbolizes the result that there is probably no human
language which is truly scrambling in every word order if mild context-sensitivity
is the upper bound, which was an early conjecture of Joshi (1983), which was
recently proven by Kanazawa and Salvati (2012). The first one, the “copy” language,
shows that human languages do not need queue automata.® Together they show
that the automata-theoretic approach to linguistic explanation captures some natural
boundaries of human syntax and parsing without further stipulation.’

Formally speaking, mild context-sensitivity does not define a formal class
but makes explicit some desirable and discernible properties. The least powerful
extension of context-freeness is a formal class, called linear-indexed languages
(Gazdar 1988). Lexicalized tree-adjoining grammars and Combinatory Categorial
Grammars (CCG; Steedman 2000) are provably linear-indexed (Joshi et al. 1991).

Linear-indexed languages have an additional property: not only are they poly-
nomially parsable (all MCSLs are), they are efficiently parsable, which means
they incur a small polynomial cost in parsing. Dutch and Swiss German data,
which exhibit strictly noncontext-free dependencies, can be given a linear-indexed

5We note that the language {ww | w € {a,b,c}*} is fundamentally different than double-copy
{www | w € {a,b,c}*}. The first one allows stack processing. Here is a LIG grammar for it:
S => X Sp.1.S1.0 = S[ s Shey = Sy % S[) — € forx € {a,b,c}.

7Continuing in this way of thinking, we could factor recursion and other dependencies in a
grammar, and incorporate word order as a lexically specifiable constraint. It might achieve the
welcome result of self-constraining recursion and levels of embedding in parsing: see Joshi (2004:
662).

Both LTAG and CCG avoid recursion by name, LTAG by employing adjunction in addition to
substitution, and CCG by avoiding any use of paradoxical combinators such as Y, or generalized
composition. That is how they stay well below Turing equivalence that might otherwise have been
achieved because of recursion by name; see also Joshi (1990), Vijay-Shanker and Weir (1993),
and Bozsahin (2012) for discussion of these aspects. Their restrictiveness (to LIG) becomes their
explanatory force.
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treatment; there are LTAG and CCG grammars for them.8 Swiss German and Dutch
cases can be shown to be abstractly equivalent to njnyns -+ - v1vv3 - -+ where n; is
an argument of the verb v;. In linear-indexed notation we get:

St.a = 1 Sii.)

S[__A] —> SE...]

/ /

(] = Spvi

Sy —> €

The algorithmic substrate of linear-indexed grammars is the Embedded PDA of

Vijay-Shanker (1987) and Joshi (1990), which is a stack of stacks (and crucially,
not two stacks, a system which we know is Turing-equivalent if they can exchange
values). Its grammar formalism passes a single stack among the nonterminals to

preserve the dependencies (from left to one symbol on the right, hence the term
linear). The following grammar is for {a"b"c"d" | n > 0}.°

S.y—aSigd
S — SE...]

f;...] —b Sf...] c
Sy —> €

7.6.2 Embedded Push-Down Automata for Human Recursion

The mechanism that was devised to surpass the context-freeness boundary in syntax
is the same as the one we need to move from i-intentions to we-intentions, or from
instrumental planning to collaborative multi-agent planning. That seems natural
given the relation between organized behavior and serializability, which was first
observed in psychology. In Karl Lashley’s words:

Temporal integration is not found exclusively in language; the coordination of leg move-
ments in insects, the song of birds, the control of trotting and pacing in a gaited horse, the
rat running the maze, the architect designing a house, and the carpenter sawing a board
present a problem of sequences of action which cannot be explained in terms of successions
of external stimuli. Lashley (1951: 113)

8The Swiss German facts are more direct because the language has overt case marking and more
strict word order; see Bozsahin (2012) for a CCG grammar of some Swiss German examples.

“Notice that {a"b"c"d"e" | n > 0} is not a linear-indexed language, hence such grammars make
no use of a linear distance metric, or simple induction from patterns; see Joshi (1983).
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Some internal mechanism appears to be at work, and, from the current per-
spective, LIGs may be the most explicit proposal for the unified problem of
characterizing behaviors that are complex enough to rise above data in unexpected
ways compared to other kinds of computations by other species.

This is not a resemblance, or reasoning by analogy. It shows that natural
languages and natural plans of humans may reduce to the same class of automata-
theoretic resource management. If natural computation is what we seek to under-
stand, there seems to be an identifiable mechanism of its management, with many
ways to materialize depending on the nature of categories. This does not put
humans with language on a par with singing birds and maze-running rats in terms
of complexity of organized behavior, but it helps us to understand what added
computational explanation is brought in by identifying a class of automata with
these behaviors, and the ensuing kinds of recursion that these species are assumed
to be capable of.

7.7 Discussion

The preceding argument is not a conjecture that humans must have a general
problem solving ability, one omnipotent induction machine without resource bound-
edness, and that language and planning fall under it. Quite the contrary, there
are unique language-specific constraints, much of which have been worked out
theoretically. (We cannot say the same thing about we-intentions and collaborative
planning. But there is one conjecture of this way of thinking: possible plans may
be the LIG-serializable ones.) Languages do not differ arbitrarily, modulo their
lexicons. And even there we can expect to see some predictability once we clarify
the concept of natural recursion, such as finite representability of lexical items,
which in effect rules out any use of recursion by name in the lexicon.

And clearly, language cannot work with action categories, or action with linguis-
tic categories, or music with linguistic categories or with visual ones. Perception is
not an omnipotent mechanism. What makes the cognitive processes learnable may
be the specialized categories, sort of Humean rise above experience. It does not
follow that we learn how to combine in each cognitive domain, rather than combine
to learn with some specialized categories.

Deacon (1997) argued that language and brain co-evolved. This proposal bears
on the claims for a common substrate. Brain areas that are taken over by language,
over at least two million years, are related to planning and action sequencing. Jaynes
(1976) had a different agenda, to explain consciousness, which he claimed happened
much more recently compared to language, but nevertheless tapping onto the same
parts of the brain, and onto the same functionality: combinatory competence. In
this regard the practice of writing grammars for language and for planning is not
just a historical accident or convention. Grammars are hidden-variables, where the
observed form and deduced meaning are hypothesized to be indirectly related by an
unobservable grammar.
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The automata-theoretic approach to the problem suggests that maybe what we
are dealing with is neither deduction nor grammar induction in a naive sense, but
computational explanation under resource boundedness constraints (thus making an
attempt to avoid the problems of induction, and problems of deduction; cf. Burns
2009; Kok 2013). Out of a possible space of grammars predicted by the identified
substrate of automata, it will carve out those which are maximally consistent
with perceived data under the constraints of computational complexity. Probably
Approximately Correct (PAC) learning is very relevant in this regard: “Inherent
algorithmic complexity appears to set serious limits to the range of concepts that
can be learned” (Valiant 1984). The class of automata properly identified makes the
hypothesis space enumerable for grammars and plans (and for recursion in them),
which is one requirement for PAC learning. Finding a hypothesis in polynomial
time which is maximally consistent with data is another requirement, and we can
maintain P property (for a problem which would be in NP if it is decidable), if we
look at likely meanings for words and plans, rather than possible meanings as Quine
(1960) did. This is the task of obtaining a grammar by solving a hidden-variable
problem, in effect saying that recursion by value is learnable too.

Another purported impediment to PAC learnability of such knowledge is the
assumed identity of the data distribution for the sampling of training and novel
examples, as pointed by Aaronson (2013: 291). However, all that PAC class of
learners requires is that the distribution is known, not necessarily derived only from
early experience. (In this sense, his example of “learning of an Einstein” might stray
PAC into weird corners of the distribution compared to a mere mortal, which means
Nature would have to sample a bit more for him or someone like him to arrive again,
but it would sample from the then-current population just like before. In a more
recent reassessment of PAC, Valiant (2013) elaborates on Invariance and Learnable
Regularity assumptions in relation to natural phenomena such as evolution and
mind).

A PAC-like mechanism can safely depend on recursion by value because of its
finite representability and its empirical foothold (after all, it is a value). The other
alternative, reentrancy, or recursion by name as conceived in theoretical computer
science, is difficult to assess naturally. There is something unnatural about it.
Empirically, it does not correspond to other natural dependencies, which seem to
be resource-sensitive and finitely representable. Theoretically, it can be reduced to
nameless recursion, which means reduction to recursion by value by a sequence of
base cases, which is not enumerable without them.

The last point is equivalent to being uncomputable, for we currently know no
way of computing with transfinite representations.'” We can compute indices of 7
indefinitely, but we cannot entertain questions regarding the next number after .
Nor can we ask questions about what happens after a computational process fails to
halt, and expect an answer.

0Notice that lazy evaluation is not a remedy here. By lazy evaluation, we can represent infinite
streams by finite means (Abelson et al. 1985; Watt 2004), but for that to work infinite streams must
be enumerable.
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7.8 Conclusion

From a computer science perspective, natural language syntax does not seem to
operate on recursion by name. The kind of dependencies we capture in linguistics
when we draw trees of hierarchical structures is recursion by value, which is
semantic in nature, but clearly syntacticized. The same can be said about plans,
which fall into environment- and object-orientation by affordances (Gibson 1966),
syntactically corresponding to type-raising, and to event-orientation by combinatory
composition, which is, syntactically, function composition (Steedman 2002).

Recursion-by-value assumption is commonplace in all of cognitive science, also
assumed by those who insist it is not needed in syntax (see Everett’s commentaries
after the recursion conference—Speas and Roeper 2009). I believe that Everett’s
view is not sustainable (Footnote 1, also Bozsahin 2012), but its failure will not
vindicate (Hauser et al. 2002; Fitch et al. 2005).

Humans appear to be uniquely capable of recursion by value, of the kind that
can be afforded by a stack of stacks. Various predictions about syntax and other
cognitive processes follow from an automata-theoretic way of thinking about them.
Therefore, uniqueness of syntax arguments to humans, which I take to be a fact,
can be better explained if we conceive automata-constrained recursion as the most
unique human capacity for cognitive processes.
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Chapter 8

AL Quantum Information, and External
Semantic Realism: Searle’s Observer-Relativity
and Chinese Room, Revisited

Yoshihiro Maruyama

Abstract In philosophy of mind, Searle contrived two arguments on the impossibil-
ity of Al: the Chinese room argument and the one based upon the observer-relativity
of computation. The aim of the present article is two-fold: on the one hand,
I aim at elucidating implications of the observer-relativity argument to (ontic)
pancomputationalism, in particular the quantum informational view of the universe
as advocated by Deutsch and Lloyd; on the other, I aim at shedding new light on
the Chinese room argument and the nature of linguistic understanding in view
of the semantic realism debate in philosophy of logic and language, especially
Dummett’s verificationist theory of meaning. In doing so, philosophy of mind turns
out to be tightly intertwined with philosophy of logic and language: intelligence is
presumably the capacity to reason, and in view of a distinction between statistical
and symbolic Al (“Al of sensibility” and “Al of understanding” in Kantian terms),
philosophy of logic and language is arguably the part of philosophy of mind
that concerns the symbolic realm of intelligence (i.e., the realm of understanding
rather than sensibility). More specifically, in the first part of the article, I argue
that pancomputationalism cannot be maintained under Searle’s external realism;
nevertheless, a radical (external) antirealist position, such as Wheeler’s (“It from
Bit”), may allow for a possibility of pancomputationalism. The Searle’s argument
and the infinite regress paradox of simulating the universe yield challenges to
pancomputationalism and the quantum informational view of the universe, leading
us to the concept of weak and strong information physics (just like weak and
strong Al). In the second part, I argue that Dummett’s principle of manifestation on
linguistic understanding commits Searle to semantic realism due to the nature of his
Chinese room argument. Searle’s position must thus be realism in two senses, that
is, it has to be external semantic realism. I finally focus upon recent developments of
categorical quantum mechanics, and discuss a quantum version of the Chinese room
argument. Underpinning all this is the conceptual view that the duality of meaning
manifests in different philosophies of logic, language, and mind.
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8.1 Introduction: Searle’s Chinese Room
and Observer-Relativity Arguments

The Chinese room argument by John Searle is prominent among arguments against
the concept of genuine artificial intelligence (such as strong Al or the Turing test),
having been intensively discussed by both proponents and opponents (see, e.g.,
Cole 2009). Less known is his later argument based upon the observer-relativity of
computation (Searle 2002), which shall be called the observer-relativity argument
in the present article. It basically proceeds as follows.

1. Computation exists relative to observers.
2. However, human intelligence does not.
3. Therefore, the latter cannot be reduced to the former.

For the moment let us put it aside to explicate why computation is relative
to observers (though Searle asserts that it is obvious in the quotation below).
Interestingly, Searle (2002) concludes the article with the following retrospective
remarks (p. 17):

Computation exists only relative to some agent or observer who imposes a computational

interpretation on some phenomenon. This is an obvious point. I should have seen it ten years
ago, but I did not.

Although there are still quite some on-going debates on the plausibility of the
observer-relativity argument, in the present article, I focus on implications rather
than the pros and cons of the argument.

More specifically, the aim of the article is to show that the observer-relativity
argument sheds new light upon ontic pancomputationalism, according to which the
universe itself is a computing system; especially we focus upon the quantum version
of ontic pancomputationalism, namely the view that the universe is a huge quantum
computer (we omit “ontic” in the following; see Piccinini (2010) for varieties of
pancomputationalism). This sort of quantum informational view of the universe
has been advocated by Lloyd (2006), Deutsch (1997), and others including both
physicists and philosophers.

The quantum informational view of the universe may appear to be an issue
totally different from Searle’s philosophy of mind, but it is closely related indeed.
Among other things, the observer-relativity of computation seems most obvious in
the case of quantum computation, which allows us to exploit microscopic quantum
phenomena in order to compute faster and communicate securer than possible in the
conventional classical framework. Then, it is we observers that regard the unitary
time evolution of a quantum system as a computational process; the former, by
itself, is merely a physical phenomenon.
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In this direction, I finally argue that a quantised version of the observer-relativity
argument refutes a strong form of quantum pancomputationalism as long as the
universe is not observer-relative (yet a modest form of it remains maintainable
even in that case). To put it the other way around, if we are happy to consider the
universe to be observer-relative just as Wheeler (1990) indeed does with the famous
saying “It from Bit”, then we can still keep the strong quantum informational view
consistent. In order to endorse the strong pancomputationalism thesis, we must thus
choose either the Searle’s realist view or an antirealist view such as Wheeler’s. In
this way, pancomputationalism is tightly intertwined with the realism/antirealism
debate.

How does the observer-relativity argument relate to the Chinese room argument?
Just before the remarks above, Searle summarises the Chinese room argument as
follows (Searle 2002, p. 17):

The Chinese room argument showed semantics is not intrinsic to syntax.

To put it differently, syntax is not enough to confer meaning on symbols, or it is not
“sufficient for semantic content” in Searle’s words. In contrast to this, the point of
the observer-relativity argument is summarised as follows (ibid., p. 17):

But what this argument shows is that syntax is not intrinsic to physics.

The observer-relativity argument is more fundamental than the Chinese room
argument in the sense that even if syntax is sufficient for semantics, any computer,
which itself is a physical entity, cannot even represent syntax of language because
physics alone is not sufficient for syntax. In other words, computation (as syntactic
symbol manipulation) is more than mere physics, and thus the computer per se
does not compute. Computation is only enabled in the presence of both a suitable
physical system and an observer regarding the time evolution of the system as a
computational process. From the Searle’s point of view, therefore, computation is
necessarily human computation as it were; there is no computation whatsoever in
the absence of observers (yet it is not clear whether non-human beings can count as
observers in Searle’s view).

Now, let us turn to implications of the Chinese room argument, the second topic
of the article. Searle (2002) asserts that syntax by itself is not sufficient for semantic
content (p. 16):

In all of the attacks on the Chinese room argument, I have never seen anyone come out
baldly and say they think that syntax is sufficient for semantic content.

Would it really be impossible to account for semantics in terms of syntax? What is
called proof-theoretic semantics (see, e.g., Kahle and Schréder-Heister 2005) may
be seen as a sort of way to do it. Proof-theoretic semantics is an enterprise to account
for the meaning of logical and other expressions in terms of proof theory within
the tradition of Gentzen, Prawitz, and Martin-Lof. It has a philosophical origin in
Dummett’s antirealist philosophy, and may be regarded as a form of inferentialism
as advocated by Brandom (2000). Traditionally, the enterprise of semantics was
mostly along the line of the referentialist or denotationalist account of meaning,
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such as the Tarski semantics, in which to understand a sentence is to know its truth-
conditions through the denotations of expressions involved. It is still the dominating
paradigm of semantics in many fields of pure and applied logic.

Proof-theoretic semantics objects to it, claiming that the meaning of a word can
fully be given by the inferential role it plays in our linguistic practice, without
any reference to objects outside language. Some proponents of proof-theoretic
semantics refer to the later Wittgenstein’s thesis “Meaning is use.” (In light of
his later philosophy, however, Wittgenstein himself would not think there is any
explicit formal rule governing the use of language; this is obviously relevant to the
issue of rule following and to the Kripkenstein paradox.) Especially, the meaning
of a logical constant is accounted for by the inferential rules governing it (e.g.,
the introduction and/or elimination rules in the system of natural deduction). Thus,
syntax is autonomous and meaning-conferring in proof-theoretic semantics, and
we do not need truth conditions or denotations to confer meaning on logical and
other symbols. There is no outside syntax in proof-theoretic semantics, and syntax
is indeed sufficient for semantics.

A philosophical underpinning of proof-theoretic semantics is Dummett’s argu-
ments against semantic realism; especially, in this article, we focus on his mani-
festation argument, which is based on the principle of manifestation on linguistic
understanding. I argue that Searle’s conception of linguistic understanding violates
the principle of manifestation, and thus he must be committed to semantic realism.
While Searle takes the position of external realism on the nature of the universe, his
position must be semantic realism as well, which is realism on the nature of meaning
or linguistic understanding.

8.2 Observer-Relativity and Pancomputationalism: Keep
External Realism or Allow Antirealism?

In this section, we first briefly review the Searle’s idea of observer-relativity,
and then address implications of the observer-relativity argument to the quantum
informational view of the universe, finally leading to the conclusion that quantum
pancomputationalism is not tenable as long as a form of scientific realism is
maintained in the sense that the universe exists independently of observers; yet
antirealism such as Wheeler’s allows for a possibility of quantum pancomputational-
ism. Searle’s external realism plays a crucial role in the justification of the quantum
observer-relativity argument presented below.

Searle (2002) argues in favour of the observer-relativity of computation in the
following way (p. 17):

1. Computation is defined in terms of symbol manipulation.

2. The notion of a symbol is not a notion of physics, but a notion of observers (who
decide upon whether to regard physical tokens in Nature as symbolic entities).

3. Therefore, computation is not intrinsic to physics, and relative to observers.
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There are merely some electromagnetic phenomena going on inside a computer (cf.
Landauer (1991)’s dictum “Information is physical”), and the physical phenomena
themselves are not computation. The computer is a system of physical devices.
Any physical entity per se cannot be a symbol, and so cannot constitute syntax
consisting of symbols, much less semantics. In a nutshell, the computer per se
does not compute. Rather, we observers conceive of the physical phenomena as
computational processes, and of the computer as computing. Whereas physical
phenomena without observers are nothing more than physics, those with observers
can be computation. In such a way, we may lead to the Searle’s idea that computation
is relative to observers. From the Searle’s point of view, computation is not a matter
of reality, but a matter of observation.

Searle’s view may, of course, be contested from different perspectives (one could
even argue that, just as computation is relative to observers, intelligence is relative to
observers, and so the human does not think just as the computer does not compute);
in this section, however, I aim at elucidating what insights can be derived from it,
especially in relation to the quantum information view of the universe.

8.2.1 Is Ontic Pancomputationalism Tenable or Not?

Quantum computation is a relatively new, but recently rapidly growing paradigm of
models of computation, facilitating much faster and securer ways of computing and
communicating than classical computation. There are some other novel models of
computation as well. While quantum computation builds upon microscopic physical
systems, for example, DNA computation is based on biological systems, utilising
their salient features as resources for computation. Searle (2002) succinctly pins
down the core idea of such emergent models of computation, in saying “you can
assign a computational interpretation to anything” (which is part of the quotation
above), even though he does not explicitly touch upon such recent models of
computation.

The basic idea of quantum computation (especially, the quantum circuit model) is
that quantum states can be seen (by us observers) as information (called qubits), and
the unitary time evolution (and measurements) of them as information processing.
In a nutshell, we may view quantum dynamics as computational processes, and then
we are able to exploit salient features of quantum physics, such as entanglement (or
the Einstein-Podolsky-Rosen “paradox”), as resources for computation; it is widely
believed in the quantum information community that this way of thinking played
a significant role in contriving quantum protocols (e.g., quantum teleportation
and superdense coding). Likewise, interpreting DNA dynamics as computational
processes leads us to DNA computation. Thus, we observers are always allowed to
(and not to) interpret phenomena as computation. In the light of this, I would say
that Searle’s observer-relativity perspective on computation is not only conceptually
important, but also practically matter, indeed lying at the heart of different sorts of
so-called natural computing as mentioned above.
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At the same time, however, Searle’s observer-relativity argument, I think, allows
us to make a critical objection to the quantum informational view of the universe. I
especially have in mind the claim of Lloyd (2006) that the universe is a quantum
computing system. It is similar to the assertion that Nature is computational
intelligence. Searle (2002) says:

The natural sciences describe features of reality that are intrinsic to the world as it exists
independently of any observers.

On the other hand, computation is observer-relative, and does not describe intrinsic
features according to him. In the light of this, we may adapt the observer-relativity
argument presented above to contrive the following, quantum observer-relativity
argument:

1. Quantum computation exists relative to observers.

2. However, the universe exists independently of observers.

3. Therefore, the latter cannot be reduced to the former, so that the universe cannot
be a quantum computer.

Actually, we do not really have to focus upon quantum computation alone, but rather
we may address the possibility of pancomputationalism in general. Nevertheless,
there are two reasons not to do so: firstly, non-quantum pancomputationalism is
not plausible any more in the light of the quantum nature of the world; secondly,
the claim of item 1 is more convincing in the case of quantum rather than classical
computation as already noted above (who thought of quantum systems as computing
before the discovery of quantum computation? Any quantum system would not have
been computing in that classical era).

Obviously, the quantum observer-relativity argument hinges upon the claim of
item 2, a form of scientific realism. Accordingly, we may seek a possibility of
the quantum information view in the absence of this sort of realism. At the same
time, however, Searle himself takes the position of the so-called “external realism”,
asserting as follows:

There exists a real world that is totally independent of human beings and of what they think
or say about it. (Searle 1998, p. 13)

There is a way that things are independently of our representations (Searle 1998, p. 31)

We may thus conclude that the Searle’s position adopting external realism together
with observer-relativity is inconsistent with the quantum informational view of the
universe. As already discussed, quantum computation is in good harmony with
the observer-relativity thesis, and therefore the only remaining option to maintain
the quantum informational view would be to revise external realism in some way
or other.

Leaving this issue in the next subsection, It should be noted here that this
quantum version of the observer-relativity argument never refutes the possibility
of quantum computation qua technology, and does not give any objection to the so-
called information (or digital) physics enterprise qua science (it seem so interesting
and promising that I am indeed working on it). But rather the point is that even if it
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finally succeeds in accounting for the complex physics of the entire universe, it does
not ipso facto imply that the universe per se is a quantum computer, or quantum
computational processes.

8.2.2 Strong vs. Weak Theses of Information Physics

Information physics (aka. digital physics with a little bit different meaning) has
already gained quite some successes (e.g., the well-knwon informational account of
the Maxwell’s demon; the operational reconstruction of quantum theory in Chiri-
bella et al. 2011), and it would deserve more philosophical attention. Information
physics ultimately aims at reconstructing and developing the whole physics in
terms of information, which is taken to be a primary entity, considered to be more
fundamental than physical objects. In information physics, it is not that there are
computational processes because there are physical systems to implement them,
but that there are computational processes in the first place, and physics is just
derived from them. Philosophically, this may count as a sort of process philosophy
as advocated by Whitehead and Leibniz (under a certain interpretation).

Al and information physics are quite different issues with no apparent link
between them (except the concept of computation giving their underpinnings). As
already seen in the previous subsection, it seems fruitful to borrow concepts in Al,
or philosophy of mind, in order to shed new light on information physics. Just like
the common concept of weak and strong Al I propose to make a distinction between
weak and strong IP (Information Physics), or weak pancomputationalism and strong
pancomputationalism:

1. Weak IP (weak pancomputationalism) is the view that (some constituents of) the
universe may be interpreted as computational processes.

2. Strong IP (strong pancomputationalism) is the view that the universe per se is a
bunch of computational processes as a matter of fact.

The quantum observer-relativity argument presented above surely refutes the latter,
but not really the former. Because interpretation is a matter of observers, and
the weak IP view does not hold that the universe is computational processes
independently of us observers.

We may conceive of another strong IP view that the universe can be simulated
by a computer; Lloyd (2006) alleges it would, in principle, be possible. I think,
however, that the notion of the computer simulating the universe would suffer from
alogical paradox because it involves the following self-referential infinite regress:

1. The computer simulating the entire universe must simulate itself.

2. This implies that the computer must simulate the computer simulating the
universe.

3. Likewise, it must simulate the computer simulating the computer simulating the
universe.
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4. This continues ad infinitum; hence no computer simulating the universe.

This may be called the paradox of simulating the universe (cf. the supertask paradox;
the paradox of the set-theoretical universe containing itself as a set).

John Wheeler’s dictum “It from Bit” is along a similar line: Wheeler (1990)
endorses the following doctrine:

All things physical are information-theoretic in origin.

However, he boldly thinks that the universe and every “it” in the universe arise from
our observations (Wheeler 1990). He thus seems to reject the assertion of item 2
above, maintaining that the universe is actually relative to observers. This might
make sense in quantum physics in particular. The relationships between systems
and observers are quite subtle in quantum physics: there is no neutral way to
see (or measure) quantum systems as they are, without disturbing them through
observations, and it is impossible to assign values to all observables (physical
quantities) in a coherent way (the Kochen-Specker theorem). Hence we cannot
really access the “reality” of quantum systems, which, some people think, do not
actually exist; at least, we cannot maintain local realism according to the Bell’s
theorem. Consequently, it seems plausible to some extent to think that the universe
is relative to observers due to its quantum nature.

At the same time, however, Wheeler does not restrict his claim into the quantum
realm, applying the antirealist view to classical macroscopic systems as well as
quantum microscopic ones. Therefore, it is indeed a radical antirealist position,
to which Searle’s observer-relativity argument does not apply, and which may be
coherent as a philosophical standpoint, at the cost of giving up the ordinary realist
view of Nature.

8.3 The Chinese Room and Semantic Realism: What Does
the Understanding of Language and Meaning Consist in?

In this section we first have a look at the issue of how external realism relates to
semantic realism, and then elucidate Searle’s position about the nature of linguistic
understanding in view of the semantic realism debate concerning in particular
Dummett’s philosophy of language. As a case study we also discuss a quantum
version of the Chinese room argument in the context of categorical quantum
mechanics and quantum linguistics.

As mentioned in the last section, Searle’s position on the realism debate is char-
acterised as external realism, which is basically a position on the nature of physical
reality or the universe, and as such has nothing to do with the nature of language
and meaning, or the nature of linguistic understanding. Semantic realism discussed
in this section is primarily about the latter, even though Dummett attempts to relate
them by the so-called constitution thesis that “the literal content of realism consists
in the content of semantic realism” (Miller 2010); according to Dummett, “the
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theory of meaning underlies metaphysics” (just as the denotationalist/verificationist
conception of meaning underlies realism/antirealism). By contrast, Devitt (1991)
argues (p. 39):

Realism says nothing semantic at all beyond . .. making the negative point that our semantic
capacities do not constitute the world

In such a view, semantic realism and external realism, in principle, have nothing to
do with each other. Even so, however, I am going to argue in this section, however,
I argue that Searle must commit himself not only to external realism but also to
semantic realism, due to his view on the understanding of meaning.

8.3.1 Dummett’s Manifestation Argument Leads Searle
to Semantic Realism

In philosophy of logic, Dummett’s view on the meaning of logical constants
has led to what is now called proof-theoretic semantics, as opposed to model-
theoretic semantics (in logic, semantics traditionally meant the latter only). From
the perspective of proof-theoretic semantics, meaning is inherent in syntactic rules
governing how to use symbols, and thus grasping meaning is nothing more than
grasping those rules; there is no need of any further elements like truth conditions
or denotations. Proponents of proof-theoretic semantics thus consider syntax to be
sufficient to confer meaning upon symbols, and so for semantics.

This is the view of proof-theoretic semantics, obviously being in striking contrast
with Searle’s Chinese room view that syntax alone is not enough to account for
semantic content. A philosophical underpinning of proof-theoretic semantics is
Dummett’s arguments against semantic realism; another is Wittgenstein’s thesis
“Meaning is use.” Dummett (1978), inter alia, contrives the so-called manifestation
argument, part of which we focus on here.

In this article, semantic realism is characterised as the position that admits
“recognition-transcendent” (Dummett’s term) contents in the understanding of
language. Dummett’s puts emphasis on the recognition-transcendency of truth con-
ditions; here, not only truth conditions but also any sort of recognition-transcendent
contents are allowed.

Searle (1992) explains the point of the Chinese room argument as follows (p. 45):

I believe the best-known argument against strong AI was my Chinese room argument that
showed a system could instantiate a program so as to give a perfect simulation of some
human cognitive capacity, such as the capacity to understand Chinese, even though the
system had no understanding of Chinese whatever.

Searle thus thinks that any syntactical or computational ability to simulate language
does not, by itself, guarantee the semantic understanding of language. This is the
reason why Searle says the Chinese room argument showed that semantics is not
intrinsic to syntax.
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What is crucial here is the following: it is not that there are some problems
on the simulation of language, but that the simulation is perfect, yet it is not
sufficient for the understanding of language. Searle indeed uses the term “perfect
simulation” in the quotation above. According to him, understanding is more than
perfect simulation.

Dummett’s manifestation argument against semantic realism is based on the
principle of manifestation, which Miller (2010) formulates as follows:

If speakers possess a piece of knowledge which is constitutive of linguistic understanding,

then that knowledge should be manifested in speakers’ use of the language i.e. in their
exercise of the practical abilities which constitute linguistic understanding.

That is, there is no hidden understanding beyond practical capacities to use language
in various situations, namely beyond the capacity to simulate language. On the
ground that anything manifested in linguistic practice can be simulated, we may
conclude that Searle’s idea that even perfect simulation is not sufficient for the
understanding of language violates the principle of manifestation. And thus Searle
is compelled to commit himself to semantic realism.

To put it differently, the principle of manifestation says that the understanding of
language must be simulatable; this is Dummett’s view. On the other hand, Searle
is directly against such a conception of linguistic understanding as seen in his
above remarks on the Chinese room argument. We may thus say that Dummett’s
antirealist view on linguistic understanding is in sharp conflict with Searle’s realist
view, especially in terms of the manifestability of understanding.

8.3.2 Categorical Quantum Mechanics and Linguistics:
Can Quantum Picturalism Confer Understanding
of Meaning?

Nearly a decade ago, categorical quantum mechanics (see, e.g., Abramsky and
Coecke 2008) paved the way for a novel, high-level (in the technical sense),
category-theoretical formalism to express quantum mechanics and quantum compu-
tation, thus allowing us to reason about quantum systems via its graphical language
and thereby to verify quantum communication protocols and algorithms in a fairly
intuitive fashion, with the flows of information exhibited clearly in the graphical
language of quantum picturalism (Coecke 2010).

The graphical language of categorical quantum mechanics enables us to dispense
with complicated algebraic calculations in the Hilbert space formalism of quantum
mechanics, replacing them by simpler graphical equivalences. Still, what is provable
is the same, and indeed there is a sort of completeness theorem between categorical
quantum mechanics and the standard Hilbert space formalism, which ensures the
equivalence between them.
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The paper “Kindergarten Quantum Mechanics” (Coecke 2005) claims that even
kindergarten students can understand the pictorial language of categorical quantum
mechanics, and so quantum mechanics itself. It is just a simple manipulation of
pictures consisting of strings, boxes, and so on; thus, children could understand
it as Coecke (2005) says. The question is then the following: do those children or
computers that are able to manipulate pictures in a suitable way understand quantum
mechanics? For example, the quantum teleportation protocol can be verified just
by “yanking” in the pictorial language, and then, do such children or computers
understand the teleportation protocol? We can get even closer to the original Chinese
room argument in the case of quantum linguistics.

Quantum linguistics emerged from the spirit of categorical quantum mechanics,
integrating Lambek pregroup grammar, which is qualitative, and the vector space
model of meaning, which is quantitative, into the one concept via the methods of
category theory. It has already achieved, as well as conceptual lucidity, experimental
successes in automated synonymity-related judgement tasks (such as disambigua-
tion). It is equipped with a graphical language in the same style as categorical
quantum mechanics. Then, do computers capable of manipulating pictures in
quantum linguistics understand language (if quantum linguistics perfectly simulates
language)? This is almost the same as the main point of the Chinese room argument.
A similar question was raised by Bishop et al. (2013).

In order to address the question, I would like to make a distinction between
mathematical meaning and physical meaning. Then, the question turns out to consist
of two different questions: if one understands the graphical language of quantum
mechanics, then does the person understand the mathematical meaning of quantum
mechanics?; and how about the physical meaning?

Here let us assume that the capacity to manipulate symbols (including figures)
is sufficient for mathematical understanding. Thus, for example, the mechanical
theorem prover does understand mathematics. Under this assumption, the first
question may be given an affirmative answer, yet the answer to the second one
on physical meaning would be negative. Physical understanding must connect
the mathematical formalism with elements of Nature so that the former correctly
models the latter. This modelling capacity is more than the mathematical ability
to manipulate symbols. Broadly speaking, physical understanding is mathematical
understanding plus modelling understanding.

At the same time, however, Searle himself would probably object to the very
assumption, since he puts strong emphasis on intensionality. For him, any sort of
understanding, including mathematical understanding, could not be gained via the
mere capacity to manipulate symbols. He would thus think that the theorem prover
does not understand mathematics, even if it can prove more theorems than ordinary
mathematicians; he might call it the “mathematical room” argument.
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8.4 Concluding Remarks

In the present article, we have revisited the Searle’s two arguments, the Chinese
room and observer-relativity arguments, in relation to quantum pancomputational-
ism and the realism debate.

In the first paper of the article, I have argued that quantum pancomputationalism
is inconsistent with external realism, yet pancomputationalism is consistent with
antirealist positions, which are more or less philosophically demanding, though. To
be precise, this is about pancomputationalism in the sense of strong IP; the weak
IP view is consistent with pancomputationalism even in the presence of external
realism. I also touched upon the paradox of simulating the universe, which is another
challenge to pancomputationalism.

In the second part, I have argued that Searle must commit himself not only
to external realism, but also to semantic realism, because of his position on
linguistic understanding as seen in the Chinese room argument. The argument
was based on Dummett’s principle of manifestation on linguistic understanding.
Finally, I discussed the Chinese room argument in the context of categorical
quantum mechanics and its graphical language. We could separate mathematical
understanding and physical understanding, and argue that the capacity to manipulate
graphical rules is sufficient for mathematical understanding, but not for physical
understanding. Searle would think, however, that it is insufficient for both, due to his
semantic realism. No theorem prover could understand mathematics from Searle’s
realist point of view.

Overall, the present article may be regarded as pursuing the duality of meaning
in its different guises: the dualities between the model-theoretic/referentialist/realist
and proof-theoretic/inferentialist/antirealist conceptions of meaning in philosophy
of logic/language/mind. These exhibit duality even in the sense that, whereas refer-
ential realism makes ontology straightforward and epistemology complicated (e.g.,
how to get an epistemic access to independent reality could be a critical problem as
exemplified by Benacerraf’s dilemma), inferential antirealism makes epistemology
straightforward and ontology complicated (e.g., anything apparently existing has to
be translated into something else with an equivalent function). Put in a broader con-
text, these dualities could presumably be compared with more general dichotomies
between substance-based and function/relation/process-based metaphysics.
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Chapter 9
Semantic Information and Artificial Intelligence

Anderson Beraldo de Araijo

Abstract For a computational system to be intelligent, it should be able to
perform, at least, basic deductions. Nonetheless, since deductions are, in some
sense, equivalent to tautologies, it seems that they do not provide new information.
In order to analyze this problem, the present article proposes a measure of the
degree of semantic informativity of valid deductions. Concepts of coherency and
relevancy, displayed in terms of insertions and deletions on databases, are used to
define semantic informativity. In this way, the article shows that a solution to the
problem about informativity of deductions provides a heuristic principle to improve
the deductive power of computational systems.

Keywords Semantic information ¢ Artifial intelligence ¢ Scandal of deduction

9.1 Introduction

For Aristotle, “every belief comes either through syllogism or from induction”
(Aristotle 1989). From that, we can infer that every computational system that
aspires to exhibit characteristics of intelligence needs to have deductive as well as
inductive abilities. With respect to the latter, there are theories that explain why
induction is important for artificial intelligence; for instance, Valiant’s probably
approximately correct semantics of learning (Valiant 1984, 2008). Nevertheless, in
the case of the former we have a problem first observed by Hintikka (1973), which
can be stated in the following way:

1. A deduction is valid if, and only if, the conjunction of its premisses, says
é1, ..., ¢y, implies its conclusion, V.

2. Inthis case, ¢1 A--- A ¢, — Y is a tautology, i.e., valid deductions are equivalent
to propositions without information.

3. Therefore, deductions are uninformative.
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This was called by Hintikka the scandal of deduction. It is a scandal not only
because it contradicts Aristotle’s maxim that deductions are important for obtaining
beliefs, but, mainly, in virtue of the fact that we actually obtain information
via deductions. Due to this and other reasons, Floridi has proposed a theory of
strong semantic information in which semantic information is true well-formed
data (cf. Floridi 2004). From this standpoint, Floridi is capable of explaining
why some logical formulas are more informative than others. If we want to
explain why deductions, not only propositions, are important for knowledge acqui-
sition and intelligent processing, we cannot, however, apply Floridi’s theory. The
main reason is that it was designed to measure the static semantic information
of the data expressed by propositions. In contrast, knowledge acquisition and
intelligence are dynamic phenomena, associated in some way to the flow of
information.

In the present work, we propose to overcome that limitation by defining a
measure of semantic information in Floridi’s sense, but in the context of a dynamic
perspective about the logical features of databases associated to valid deductions
(Sect.9.2). We restrict ourselves to first-order deductions and adopt a semantic
perspective about them, which means that deductions are analyzed in terms of
structures. There are two reasons for that choice. The first one is that the scandal of
deduction is usually approached in terms of structures associated to valid deductions
(cf. Sequoiah-Grayson 2008). In other words, it is a problem with the semantic
informativity of deductions. The second reason is technical: databases are finite
structures and so there is, in general, no complete deductive first-order logical
system for finite structures (cf. Ebbinghaus and Flum 1999).

We impose to ourselves the methodological constraint that a good approach to
semantic informativity must be applicable to real computational systems. More
specifically, we look for a solution that enables us to link semantic information
and artificial intelligence. Because of that, we propose to measure the degree of
semantic informativity of deductions as a dynamic phenomenon, based on certain
explicit definitions of insertions and deletions on databases. In that context, the
concepts of coherency and relevancy are explained by the operations of insertion and
deletion (Sect.9.3), and so semantic informativity is defined in terms of relevancy
and coherency (Sect.9.4). This approach leads us to a solution to the scandal of
deduction (Sect. 9.4). Moreover, using straightforward definitions, our definition of
semantic informativity provides an immediate heuristic principle to improve the
deductive power of computational systems in semantic terms.

9.2 Databases

We intend to analyze the semantic informativity obtained via deductions. According
to Floridi, semantic information is true well-defined data (Floridi 2011). As far as
logic is concerned, we can say that data is in some way expressed by propositions. In
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general, deductions are compounded of two or more propositions. Thus, we need to
consider databases, because they are just organized collections of data (cf. Kroenke
and Auer 2007). From a logical point of view, the usual notion of database can, in
its turn, be understood in terms of the mathematical concept of structure.

Definition 9.1. A database is a pair D = (A,T) where A is a finite first-order
structure over a signature S and T is a correct (all propositions in 7 are true in A)
finite first-order theory about A.

Example 9.1. Let D1 = (A;,T) be a database with signature S = ({s,/,a},
{C,E,H}), for s = "SaoPaulo™, [ = "London™, ¢ = "Avenida Paulista™,
C = TCity", E = FStreet” and H = T"Tohave”, such that A, =
(5,1, a}, 55,0y, ag, {5, e, {ade, {(5, @), (I, a) ) and T = {Vx(Cx — JyHxy), Vx(CxV
Ex),—El, Cs}.

Remark 9.1. In the Example 9.1 we have used "o = B to mean that the symbol
B is a formal representation of the expression o. Besides, Xg is the interpretation
of B in the structure A and we use a bar above letters to indicate individuals of the
domain of A.

The fact that T is correct with respect to A does not exclude, however, the
possibility that our database does not correspond to reality. In the Example 9.1,
it is true in A that Hla A Ea; in words, it is true in A that London has a street called
Avenida Paulista, which, until date of the present paper, it is not true. The theory
T represents the fundamental facts of the database that are took as true, that is to
say, they are the beliefs of the database. It is important to observe that 7 may not
be complete about A, it is possible that not all true propositions about A are in T’
Example 9.1 shows this.

We turn now to the dynamics of changes in databases that will permit us to
measure semantic informativity. As a general principle, we establish that these
changes in the structure of databases must preserve the true propositions of their
theories through operations that we call structural operations. The first structural
operation is the action of putting possibly new objects in the structure of the database
and, then, interpreting a possibly new symbol in terms of these objects.

Definition 9.2. Let D = (A, T) be a database over a signature S. An insertion of
the n-ary symbol o € §’ in D is a database D’ = (A’, T) where A’ is a structure over
S’ = S U {0} with the following properties:

1. A’(r) = A(z) for all T # o such that T € S;

2. Ifn=0,then A’ = AU {a} and A'(0) = a, provided that, forall ¢ € T, A" F ¢;

3. Ifn>0,thenA’ = AU{ay,...,a,} and A'(0) = A(o)U{(a1,...,ay)}, provided
that, forall ¢ € T, A’ E ¢.

Example 9.2. Let D; = (A, T) be the database of the Example 9.1. The database
Dy = (A2, T) with signature S = S U {b}, where b = "Shaftesbury Avenue,
and A, = ({5,1,a}, 5,0, a4, ap, {5, l}c, {a}g, {(5,a), (l,a)}y) is an insertion of
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b in D. On the other hand, D; = (A3, T) is an insertion of £ in D3 where
As = ({5.1,a,b},5. 0, aq, ap, {5, }c. {a, byg, {(5,a), (I,a)}y) is an S'-structure.
Nonetheless, for A* = ({5,1,a,b}, 5. 1), aq, by, {5, l}c, {a}e, {(5, @), (I,a)}y), an
§’-structure, we have that D* = (A*,T) is not an insertion of b in D; because
in this case A* ¥ Vx(Cx V EXx).

The Example 9.2 shows that it is not necessary to introduce a new object in the
structure of the database to make an insertion (cf. database D,); it is sufficient to add
a possibly new element in the interpretation of some symbol. On the other hand, it
also shows that it is not sufficient to introduce a new object in the structure of the
database to make an insertion (cf. database D*); it is necessary to guarantee that the
beliefs of the database are still true in the new structure.

The second structural operation is the action of removing possibly old objects in
the structure of the database and, then, interpreting a possibly new symbol in terms
of the remaining objects in the database.

Definition 9.3. Let D = (A, T) be a database over a signature S. A deletion of the
n-ary symbol o € §',S—{o} € §' C S, from D is a database D' = (A’, T) where A’
is a structure over " with the following properties:

1. A’(r) = A(z) for all T # o such that T € S;

2.Iftn =0,A—{A(0)} CA" C Aand A'(0) € A, provided that, for all ¢ € T,
A E ¢,

3.Iftn>0,A—{a,...,a,} CA' CAandA'(0) = A(0)—{(ai,...,a,)}, provided
that, forall ¢ € T, A’ E ¢.

Example 9.3. Let Dy = (A, T) be the database of the Example 9.1. The database
D_’2 = (A}, T) with signature S and A, = ({5,1,a},as, 1, aq, {5, e, {a}e. {(5, a),
(I,@)}n) is a deletion of s from D. On the other hand, D} = (A}, T) is a deletion
of H from D/, where A/, =_({§, 1, &}_, as, 1, aq, {5, l}c, {_&}E {(l,a)}y) is a S-structure.
Nonetheless, for A}, = ({l,a}, as., l;, aq, {I}c,{a}e, {(l,a)}x), an structure over the
signature S, we have that D), = (A4, T) is not a deletion of C from D’2 because in
this case, in despite of A} F ¢ for ¢ € T, we have that D}(H) # D),(H). Note,
however, that D is a deletion of C from Dj.

Example 9.3 illustrates that the restriction A — {ay,...,a,} € A’ € A means
that we can delete at most the elements of the domain that we remove from the
interpretation of the symbol under consideration.

Insertions and deletions on databases are well known primitive operations (cf.
Kroenke and Auer 2007). Nevertheless, to the best of our knowledge, they have
being thought of as undefined notion. Here we have proposed, however, a logical
perspective about databases and we have defined explicitly the operations of
insertion and deletion to analyze the importance of semantic information. In Aradjo
(2014), a more strict notion of structural operation is given.
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9.3 Coherency and Relevancy

In this section, we propose a dynamic perspective about coherency and relevancy.
This approach will permit us to evaluate how many structural operations a propo-
sition requires to become true. We will use these concepts to define the semantic
informativity in the next section.

Definition 9.4. An update D of an S-database D is a finite or infinite sequence
D = (D; : 0 < i < w) where D; = D and each D;, is a insertion or deletion in
D;. An update D of D is coherent with a proposition ¢ if D = (Dy, D>, ...,D,) and
A, E ¢; otherwise, D is said to be incoherent with ¢.

Example 9.4. Let D; be the database of the Example 9.1 and D, be the database
of the Example 9.2. The sequence D = (D;, D) is an update of D coherent with
Eb and Hib. Let D, be the database of the Example 9.1 and D), D} and D), be the
databases of the Example 9.3. The sequence D’ = (Dy, D}, Dy, D)) is an update of
D coherent with Es A —Hsa but not with s = a because the last proposition is false
in A} = ({l,a}, a5, i, g, {l}c, ate, {1, @) }u).-

In other words, an update for a proposition ¢ is a sequence of changes in a given
database that produces a structure in which ¢ is true. In this way, we can measure
the amount of coherency of propositions.

Definition 9.5. Let D = (D1,D;,...,D,) be an upgate of the database D. If D is
coherent with ¢, we define the coherency of ¢ with D by

min{m <n:A, F ¢}

Hp(#) = =5
i=1

but if D is incoherent with ¢, then
Hp(¢) = 0.

A proposition ¢ is said to be coherent with the database D if Hj(¢) > 0 for some
update D, otherwise, ¢ is incoherent with D.

Remark 9.2. In the definition of coherency the denominator ) -, i is used in order
to normalize the definition (the coherency is a non-negative real number smaller
than or equal to 1).

Example 9.5. The coherence of Eb and HIb with the update D of the Example 9.4
is the same 2/3, i.e., Hp(Eb) = Hp(HIb) ~ 0.66 and so Hy(Eb A HIb) = Hp(EbV
HIb) ~ 0.66. On the other hand, with respect to the coherence of Es, =Hsa and
—s = a and with the update D’ of the Example 9.4, we have Hjy, (Es) ~ 0.66,
Hy/(—Hsa) = 0.4, Hyy (s = a) = 0 and so Hy/ (Es A—Hsa) = 0.4 but Hp, (EsAs =
a) =0.
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The Example 9.5 exhibits that, given an update, we can have different proposi-
tions with different coherency, but we can have different propositions with the same
coherency as well. The fact that H(Eb) = Hy(HIb) = Hp(EbAHID) ~ 0.66 shows
that coherency is not a measure of the complexity of propositions. It seems natural
to think that £b A HIb is in a sense more complex than Eb and HIb. Here we do not
have this phenomena. Moreover, the fact that Hn (EbAHIb) = Hj(EbV HIb) ~ 0.66
makes clear that, since some propositions have a given coherency, many others will
have the same coherency. Another interesting point is that Hy, (Es) > Hp, (—Hsa)
but Hyp, (—Hsa) = Hp(Eb A HIb) = 0.33. This reflects the fact that updates are
sequences. First, we had made Es coherent with D', and later —Hsa was made
coherent with D. When —Hsa is coherent with D’ there is nothing more to be done,
as far as the conjunction Es A —Hsa is concerned.

These remarks show that our approach is different from the one given in
(cf. D’Agostino and Floridi 2009). It is not an analysis of some concept of
complexity associated to semantic information.! From this viewpoint we can obtain
an important result in the direction of a solution to the scandal of deduction.

Proposition 9.1. For every database D = (A, T) and update D coherent with ¢,
Hy(¢p) = 1 for every ¢ such that A = ¢. In particular, for ¢ a tautology in the
language of D, Hj(¢) = 1, but if ¢ is not in the language of D, 0 < Hp(¢) < 1. In
contrast, for every contradiction ¥ in any language, Hy () = 0 for every update
D of D.

In virtue of our focus in this paper is conceptual, we do not provide proofs here
(cf. Aratjo (2014) for that). By now, we only observe that if a tautology has symbols
different from those in the language of the database, it is necessary to make some
changes in order to become it true. In contrast, a proposition is incoherent with a
database when there is no way to change it in order to become the proposition true.
For this reason, contradictions are never coherent.

We turn now to the concept of relevancy. For that, let us introduce a notation.
Consider (¢, ¢, ..., ¢,) a valid deduction of formulas over the signature S whose
premises are in the set I' = {¢, ¢, ..., dn} and its conclusion is ¢ = ¢,. We
represent this deduction by I"{¢}.

Definition 9.6. Let D = (D), ..., D,) be an update of the S-database D = (A, T)
coherent with ¢. The relevant premises of the deduction I'{¢} with respect to D
are the premises that are true in D, but are not logical consequences of T, i.e., the
propositions in the set D(I") of all Y € I" for which D, = ¥ but T ¥ 1.

'In Aradjo (2014), we do an analysis of informational complexity similar to the one presented
here about coherency, but these two concepts are different. In further works, we will examine the
relation between them.
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Example 9.6. Let D" = (D). Then, D" ({Ea}{3xEx}) = {Ea}. Now let us consider
a more complex example. Let D = (D;,D,) be the update of Example 9.4. In
this case, D({Vx(Cx — —Ex), Cb}{—Eb}) is not defined because —Eb is false
in A, = ({5,7, a},ss,i,,aa,ab, {5, 7}c, {a}e, {(s,a), (7, a)}y). Nonetheless, consider
the new update D" = (Dy,D,, D3, D4, Ds) such that D; is the insertion in
Example 9.2, Ay = ({5.1, @, b}, 5,1}, aq, by, {5. ¢, {a, b}g, {(5,a), (I, a)}y) and
As = ({5,1,a,b}, 55,11, aq, by, {5, Ly, {a}e, {(5, a), (I, @) }y). Then, D" ({Vx(Cx —
—Ex), Cb}{—Eb}) = {Vx(Cx — —EX)}.

In the definition of relevant premises, we have adopted a semantic perspective
oriented to conclusion of deductions: the relevancy of the premises of a deduction
are determined according to an update in which its conclusion is true. Example 9.6
illustrates that point, because it is only possible to evaluate the relevancy of
{Vx(Cx — —Ex),Cb}{—Eb} in an update like D’ in which the conclusion —Eb
is true. Another point to be noted is that we have established a strong requirement
about what kind of premises could be relevant: the relevant premises are just the
non-logical consequences of our believes.

Definition 9.7. Let D be an S-database. If D_ is an update of D coherent with ¢, the
relevancy Ry (I") of the deduction I"{¢} in D is the cardinality of D(I") divided by
the cardinality of I, i.e.,

ID(D)|
i

Rp(I') =

but, if D is incoherent with ¢, then Rz (I") = 0.

Example 9.7. We have showed in Example 9.6 that Ry, ({Ea}{3xEx}) = 1 and
Ry ({Vx(Cx — —Ex), Cb}{—Eb}) = 0.5.

In the example above, Rp»({Vx(Cx — —Ex),Cb}{—Eb}) = 0.5 shows us
that we can have valid deductions with non-null relevancy in extended languages.
Nonetheless, the fact Ry, ({Ea}{3xEx}) = 1 exhibits that it is not necessary to
consider extended languages to find deductions with non-null relevancy. Thus, we
have a result that will be central to our solution of the scandal of deduction.

Proposition 9.2. For every database D = (A, T), update D of D and deduction
I'{¢}, if T is a complete theory of A or I' = @, then Rp(I") = 0. In particular,
tautologies and contradictions have null relevancy.

Therefore, deductions can be relevant only when we do not have a complete
theory of the structure of the database. Moreover, as deductions, isolated logical
facts (tautologies and contradictions) have no relevance. This means that we have at
hand a deductive notion of relevancy.
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9.4 Semantic Informativity and Artificial Intelligence

Having at hand the dynamic concepts of coherence and relevance, now it seems
reasonable to say that the more coherent the conclusion of a valid deduction is the
more informative it is, but the more relevant its premises are the more information
they provide. We use this intuition to define the semantic informativity of valid
deductions.

Definition 9.8. The semantic informativity I5(I"{¢}) of a valid deduction I"{¢} in
the update D of the database D is defined by

Ip(I'{¢}) = Rp(I")Hp ().

The idea behind the definition of semantic informativity of a valid deduction
I'{¢} is that I5 (1" {¢}) is directly proportional to the relevance of its premises I’
and to the coherency of its conclusion ¢. Given I'{¢} and an update D of D, if
we have Ry (I") = 0 or Hp(¢) = 0, then the semantic informativity of I"'{¢} is
zero, it does not matter how I {¢} is. Now, if Hp(¢) = O, then, by definition,
Ry(I") = 0. Thus, if the computational system, whose database is D, intends to
evaluate I5(I"{¢}) for some update D, it should look for a D coherent with ¢, i.e., a
D for which Hj(¢) > 0. In other words, our analysis of the semantic informativity is
oriented to the conclusion of valid deductions — as we did with respect to relevancy.

Example 9.8. Given the updates D” and D" of the Example 9.6. Then,
I, ({Ea}{3xEx}) = 1-1 = 1 and I, ({Vx(Cx — —Ex), Cb}{—Eb}) = 0.5-5/15 ~
0.17.

In the definition of I (1 {¢}) the relevancy of the premises, Ry ("), is a factor
of the coherency of the conclusion, Hp(¢). For that reason, if a computational
systems intends to evaluate the semantic informativity of a proposition ¢, it
must measure Hp(¢) and, then, multiply it by its relevancy R;({¢}). Hence, the
semantic informativity of a proposition ¢ can be thought of as a special case of the
informativity of the valid deduction {¢}{¢}.

Definition 9.9. The semantic informativity I(¢) of a proposition ¢ in the update
D of the database D is defined by

Ip(®) = I ({¢}18})-

Example 9.9. Considering the update D" of Example 9.6, we have that I, (Ea) =
I5»(3xEx) = 1 but I, (Ea — 3xEx) = 0. If we consider the update D" of
Example 9.6, we have that Iy, ((Vx(Cx — —Ex) A Cb) — —Eb) = 0, but
I (Yx(Cx — —Ex)) = 1, I (Cb) = 0 and I, (—Eb) = 0.4.

Example 9.9 shows that semantic informativity measures how many structural
operations we do in order to obtain the semantic information of a proposition. It
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is for that reason that I5»(Cb) = 0, false well-defined data is not semantically
informative; it should be true. In other words, it is a measure of semantic information
in Floridi’s sense (cf. Floridi 2011). From this, we can solve Hintikka’ scandal of
deduction.

Proposition 9.3. For every valid deduction Y1, ..., ¥, F ¢ in the language of D,

Ip((Y1 A== AYy) — @) = 0 for every update D. Nonetheless, if Y1,..., ¥ F ¢
is not in the language of D, I5((Yy1 A -+ A Yr) — @) > 0 for D coherent with

WL A AY) > @

This proposition is a solution to the scandal of deduction in two different senses.
First, it shows that we can have an informative valid deduction {yry, ..., ¥, }{¢}
whose associated conditional ¥y, ..., ¥, — ¢ is uninformative, for example, the
one given in Example 9.8. Second, it shows that it is not completely true that
tautologies are always uninformative. When we interpret new symbols, we have
some semantic information, notably, the one sufficient to perceive that we have a
true proposition — this is a natural consequence of our approach.

In the studies of pragmatics (a linguistics’ area of research), Wilson and Sperber
formulated two principles about relevant information in human linguistic practice:

Relevance may be assessed in terms of cognitive effects and processing effort: (a) other
things being equal, the greater the positive cognitive effects achieved by processing an input,
the greater the relevance of the input to the individual at that time; (b) other things being
equal, the greater the processing effort expended, the lower the relevance of the input to the
individual at that time. Wilson and Sperber (2004) [p. 608]

If the semantic informativity of propositions cannot be determined by its
coherency or relevancy alone, then the two Wilson and Sperber’s principles (a) and
(b) are in fact parts of one general principle associated to semantic information. Let
us put that in precise terms.

Definition 9.10. The changes that a proposition ¢ requires are the structural
operations, insertions and deletions, that generate an update D of a given database
D = (A, T) coherent with ¢p. A proposition ¢ is new if ¢ is not true in A and is not
a consequence of the theory T of the database D = (A, T).

Proposition 9.4. The less changes a new proposition requires, the more informative
it is.

Proposition 9.4 is a direct consequence of Definition 9.9. Therefore, if we show
that our Definition 9.9 is not arbitrary, then Proposition 9.4 is not arbitrary too. But
Definition 9.9 is not arbitrary. Let us prove that.

Given anupdate D = (D, ...,D,) of D = (A, T) and a deduction {¢}{¢}, either
Ry({¢}) = 0or Ry({¢}) = L. If R5({¢}) = O, then either T = ¢ or D, ¥ ¢. If
T F ¢, then there is an update D’ of D such that Hp,(¢) = 1, notably, D’ = (D).
If D, ¥ ¢, then Hy,(¢) = 0. Finally, if Ry({¢}) = 1, then T ¥ ¢ as well as
D, F ¢ and so I5(¢) = Hp(¢) > 0. Therefore, we conclude that the relevancy of
a proposition does not determine its coherency. On the other hand, if H;(¢) = O,
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then R5({¢}) = 0, but if H;(¢) > 0, this neither necessarily imply that either
Ry({¢}) = 1 nor Ry({¢}) = O, because this depends whether T = ¢. Hence, we
also conclude that the coherency of a proposition does not determine its relevancy.
Combining this two conclusions we obtain a general conclusion.

Proposition 9.5. The semantic informativity of propositions cannot be determined
by its coherency or relevancy alone.

Therefore, Proposition 9.4 is an informational justification for the Wilson and
Sperber’s principle (b). This is interesting because Wilson and Sperber’s principle
(b) is an empirical matter under discussion among linguistics (cf. Wilson and
Sperber 2004), but here it becomes an informational principle. Using the same
strategy, we can also obtain a formal version of Wilson and Sperber’s principle (a).

Definition 9.11. If a valid deduction I"{¢} has non-null relevancy in a given update
D and its conclusion ¢ is new, then the results that it produces are its relevant
premisses and its conclusion, i.e., D(I") U {¢}, but if ¢ is not new, then the results
that it produces are just its relevant premisses D(I").

Proposition 9.6. The more results a valid deduction produces, the more informa-
tive it is.
We can, then, combine these two propositions in an schematic one.

Proposition 9.7 (Principle of semantic informativity). 7o increase semantic
informativity, an intelligent agent, with respect to its database, must perform little
changes and produce big results.

In recent works (cf. Valiant 2008), Valiant have argued that one of the most
important challenges in artificial intelligence is that of understanding how computa-
tional systems that acquire and manipulate commonsense knowledge can be created.
With respect to that point, he explains that some of the lessons from his PAC theory
is this:

We note that an actual system will attempt to learn many concepts simultaneously. It will

succeed for those for which it has enough data, and that are simple enough when expressed

in terms of the previously reliably learned concepts that they lie in the learnable class.
Valiant (2008) [p. 6]

We can read Valiant’s perspective in terms of the principle of semantic infor-
mativity. The simple propositions are the more coherent propositions, the ones that
require small changes in the database. To have enough data is to have propositions
sufficient to deduce other propositions and this means that deductions with more
results are preferable. Of course, Valiant’s remark relies on PAC, a theory about
learnability, not on deductivity. It is necessary to develop further works to make clear
the relationship between these two approaches. Since we have designed a concept
of semantic informativity implementable in real systems, it seems, however, that the
possibility of realizing that is open.
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9.5 Conclusion

We have proposed to measure the degree of semantic informativity of deductions by
means of dynamic concepts of relevancy and coherency. In a schematic form, we
can express our approach in the following way:

Semantic informativity = Relevancy x Coherency.

In accordance with this conception, we showed how the scandal of deduction
can be solved. Our solution is that valid deductions are not always equivalent to
propositions without information. It is important to note, however, that this problem
is not solve in its totality, because here we have analyzed semantic information
only from the point of view of relevancy and coherency. Another crucial concept
associated to semantic information is the notion of complexity. In Aradjo (2014),
we study this subject.

We have also derived a principle of semantic informativity that, when applied to
computational intelligent systems, shows that an intelligent agent should make few
changes in its database and obtain big results. This seems an obvious observation,
but it is not. The expressions “few changes” and “big results” here have a technical
sense which opens the possibility of relating semantic information and artificial
intelligence in a precise way. Indeed, there is a lot of possible developments to be
explored, we would like to indicate three.

The first one is to investigate the connections between semantic informativity and
machine learning, specially, with respect to Valiant’s semantic theory of learning
(PAC). As in Valiant’s PAC, we can define probability distributions on the possible
updates and delineate goals for them — the principle of semantic informativity could
play an important role in this point. Moreover, we can also introduce computational
complexity constrains to agent semantic informativity. Thus, it will be possible
to analyze how many efficient updates (time and space requirements bounded by
a function of the proposition size) are necessary for a given proposition to be
coherent with the database. In this way, we will be able, for example, to compare
the learnability of the concepts which occur in propositions, in the Valiant’s sense
(cf. Valiant 1984), with respect to their semantic information.

The second possible line of research is to develop a complete dynamic theory
of the semantic informativity by incorporating belief revision in the line of AGM
theory (cf. Alchourrdn et al. 1985). In the present paper, the believes of the database
have been maintained fixed, but a more realistic approach should incorporate
revision of believes. For example, if we consider distributed systems, the agents
probably will have some different beliefs. In this case, it is necessary to analyze the
changes of semantic information, conflicting data and so on.

The last point to be explored, but no less important, is to analyze the relationship
between our dynamic perspective about semantic information and other static
approaches, mainly, with respect to Floridi’s theory of strong semantic information
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(Floridi 2004). It is important to observe that we have proposed a kind of Hegelian
conception about semantic information, according to which semantic informativity
is analyzed in semantic terms, whereas, for example, Floridi’s conception is
Kantian, in the sense that it analyzes the relationship between propositions and the
world in order to understand the transcendental conditions of semantic information
(cf. Floridi 2011). Our approach seems to be a hegelian turn in the philosophy of
information similar to what Brandom did with respect to the philosophy of language
(cf. Brandom 1989).
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Chapter 10
Information, Computation, Cognition.
Agency-Based Hierarchies of Levels

Gordana Dodig-Crnkovic

Abstract This paper connects information with computation and cognition
via concept of agents that appear at variety of levels of organization of
physical/chemical/cognitive systems — from elementary particles to atoms,
molecules, life-like chemical systems, to cognitive systems starting with living
cells, up to organisms and ecologies. In order to obtain this generalized framework,
concepts of information, computation and cognition are generalized. In this
framework, nature can be seen as informational structure with computational
dynamics, where an (info-computational) agent is needed for the potential
information of the world to actualize. Starting from the definition of information as
the difference in one physical system that makes a difference in another physical
system — which combines Bateson and Hewitt’s definitions, the argument is
advanced for natural computation as a computational model of the dynamics of
the physical world, where information processing is constantly going on, on a
variety of levels of organization. This setting helps us to elucidate the relationships
between computation, information, agency and cognition, within the common
conceptual framework, with special relevance for biology and robotics.

Keywords Information ¢ Computation ¢ Cognition ¢ Natural computation
Morphological computing * Morphogenesis * Embodied computation

10.1 Introduction

At present we are lacking adequate understanding of cognition in humans (which is
what is commonly thought of as “cognition””) while at the same time we are trying
to develop cognitive robotics and cognitive computing. The contemporary research
into artifactual cognition performed in parallel with studies of cognition in humans
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and animals provide us with two-way learning that will result in both better insights
in mechanisms of biological cognition and better solutions for cognitive robotics.

In order to study within one framework cognition in living organisms (including
humans) and machines (including cognitive software), this article is generalizing
some common ideas, thus using extended concepts of <agent>, <observer>, <infor-
mation>, <computation>, <evolution>, <cognition>, <learning>, and <knowledge>.
The basis is the idea of nature as a network of networks of <agents> that exchange
information. This generalized type of <agents>exist on the level of fundamental
particles, then on the higher level of atoms as composed of networks of elementary
particles, then higher still there are molecules consisting of atoms as<agents>.
Up in hierarchy of levels of organization of agents there are cells as networks of
molecules, organisms as networks of cells, ecologies as networks of organisms, etc.
In short there is a fractal structure with recurrent pattern of agents within agents on
variety of levels of organization. Dynamics on each level of organization is a result
of information exchanges between agents.

<Information> is relational, based on differences, and thus <agent>—dependent.
<Agents> are entities capable of acting, that is capable of causing things to happen
(elementary particles, atoms, molecules, cells, organisms, etc.). <Computation>is a
process of <information> exchange between <agents>, i.e. <information>dynamics
or processes on informational structures (Hewitt 2012).

Epistemology is formulated as theory of information (Chaitin 2007), or more
specifically as theory of informational structures) (in<cognitive>agents. Even
though informational structural realism of Floridi and Sayre is formulated from the
perspective of human agents, it is readily generalizable to any other kind of agents
processing information from the outside world that guides their organization and
behavior.

In this generalized framework, <agents>exist already on a basic physical
level, and they form, via processes of self-organization, increasingly complex
structures, including living organisms. Living <agents> (all biological systems) are
critically dependent on the capability to acquire energy for their own <agency>.
Their <cognition>is a property that sustains and governs their process of being
alive. Understanding of living <agency>is closely tied to the understanding of
origins of life and its evolution.

In present approach we look at evolution as a process that unfolds through mor-
phological <computation>, by morphogenesis and meta-morphogenesis as intro-
duced in Turing (1952) and further studied in Sloman (2013a) and Dodig-Crnkovic
(2012d). At different levels of complexity of living <agents>, different levels
of <cognitive> information-processing capacities develop — from bacterial colonies
consisting of cells with distributed information processing (Xavier et al. 2011)
via plants to organisms with nervous systems such as C. elegans (See Open-
Worm project http://www.openworm.org that is building the computational model
of this microscopic worm) to mammals and finally humans. Organisms pre-
serve <evolutionary memory> as the information about past in their body structures,
that in interaction with the environment enable different behaviors. From biological
structures as information-processing <machines>we can hope to learn more not
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only about the details of form generation (morphogenesis) in biological systems, but

also about possible future computational methods and devices inspired by intrinsic

natural computation. A lot can be learned from information processing in the brain.
The uniformity of the cortical architecture and the ability of functions to move to different
areas of cortex following early damage strongly suggests that there is a single basic learning

algorithm for extracting underlying structure from richly-structured, high- dimensional
sensory data. (Hinton 2006) (Italics added)

Based on the uniformity of cortical architecture, Deep Learning Algorithms have
been recently developed as machine learning algorithms for pattern recognition.
They are using artificial neural networks that learn in a succession of levels
corresponding to increasing levels of abstraction of concepts, with higher-level
concepts being defined by means of lower-level ones (Hinton et al. 2006; Hawkins
and Blakeslee 2005).!

Similarly, based on the behavior of natural systems, Probably Approximately
Correct “PAC” algorithms (Valiant 2013) have been proposed as a way of learning
from nature how to learn. The scope of PAC algorithms is wider than the scope
of Deep Learning Algorithms as they offer in general “the unified study of the
mechanisms of evolution, learning, and intelligence using the methods of computer
science”. Valiant argues that “to understand the fundamental character of life,
learning algorithms are good place to start.”

While both PAC algorithms and Deep Learning are centered on machine
learning, and from there make important connection between (machine) learning
algorithms and evolution, I introduced a different path searching for grounding
of learning in the mechanisms of <cognition> starting with simplest living
organisms like bacteria whose processing of information is form of natural
computation. Within the framework of info-computationalism, I proposed the
unified view of computing nature with <agent>—based fundamental notions
of <information> and <computation> (in the form of information exchanges
between <agents>). This builds on Hewitt (2012) who especially focused on
interaction and mechanisms of computation as discussed in Dodig-Crnkovic and
Giovagnoli (2013). In this approach it is essential that both informational structures
and computational processes appear on variety of levels of organization (levels of
abstraction).

This naturalist strategy aims at explaining human cognitive capacities as a result
of evolutionary and developmental processes that we want to model and simulate in
order to be able to both better understand humans and other living organisms, how
they function and what causes their malfunctions, as well as to learn how to build
intelligent computational artifacts that will add to our extended cognition.

The deep learning model (Hinton et al. 2006) involves “learning the distribution of a high level
representation using a restricted Boltzmann machine to model each higher layer” (Smolensky
1986).
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10.2 Nature as Info-Computation for a Cognizing Agent

In this article I will propose a framework with the aim to naturalize cogni-
tion, meaning that we will not study the concept of cognition but <cognition> as
natural phenomenon in any kind of living <agent>.> The framework of info-
computationalism, presented earlier in Dodig-Crnkovic and Miiller (2011); Dodig-
Crnkovic (2006). Dodig-Crnkovic and Miiller (2011), Dodig-Crnkovic (2006) is
based on concepts of <information>and <computation>as two fundamental and
mutually dependent concepts defined in a broader sense than what one typically
is used to.

Information is understood according to informational structural realism) () (as
the structure, the fabric of the relationships in the universe (for an agent).

Computation is defined as information processing (Burgin 2010) and presents all
processes of changes of the structures of the universe® (natural computationalism
or pancomputationalism) (Chaitin 2007; Fredkin 1992; Lloyd 2006; Wolfram 2002;
Zuse 1970).*

Combining the frameworks of informational structural realism and natural
computationalism results in the model of the universe as a computational network
with computation defined as the dynamics of natural information, i.e. natural
computation (Rozenberg et al. 2012). Computing nature represents all structures
and processes existing in the physical universe, which necessarily appear in
both continuous and discrete form, corresponding to sub-symbolic and symbolic?
computation levels.

From now on, given the above non-standard definitions I will omit brackets
around <agent>, <information>, <computation>, <cognition>etc. and I hope the
reader will keep in mind generalized notions that are used in the rest of the article. I
will use them only occasionally to emphasize the use of non-standard definition.

A consequence for epistemology for an agent processing information is that
information and reality are seen as one by an agent (Vedral 2010; Zeilinger 2005),
not only in case of humans, but also for other living organisms as cognizing agents
(Ben-Jacob et al. 2011; Maturana and Varela 1992; Shapiro 2011). The Relational
Nature of Information and Levels of Organization.

2Some of the issues discussed here have been discussed by the author in a recent book Computing
Nature and in the book Information and Computation. This paper presents a synthesis of the
previously developed arguments.

3This “processing” can be either intrinsic (spontaneously going on) within any physical system or
designed such as in computing machinery.

“For majority of computationalists, computing nature is performing discrete computation. Zuse for
example represents his calculating space as cellular automata, but the assumption about the type
of computation is not essential for the idea that “the universe <computes>its next state from the
previous one” (Chaitin 2007).

3Sub-symbolic computations take place in neural networks, as signal processing which leads to
concept formation following pattern recognition.
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Informational structural realism builds on the realist position that the world
exists independently from observation of cognizing agents. We identify it with
proto-information or potential information, which is the potential form of existence
equivalent to Kant’s das Ding an sich. That potential information develops into
actual information (“a difference that makes a difference” (Bateson 1972)) for a
cognizing agent through interactions that uncover/register® aspects of the world.

Hewitt proposed the following general relational’ definition that subsumes
Bateson’s definition:

Information expresses the fact that a system is in a certain configuration that is correlated
to the configuration of another system. Any physical system may contain information about
another physical system. (Hewitt 2007) (Italics added)

Bateson’s definition follows from the above formulation if “another system”
is an observer for whom the difference in the first system makes a difference.
The relational view of information where information is a difference that makes
a difference for an agent, can be related to the Wheelers ideas of participatory
universe (Wheeler 1990), as well as observer-dependent formulation of endophysics
(Rossler 1998) and second-order cybernetics with its observer-dependent knowl-
edge production. “Combining Bateson and Hewitt insights, on the basic level,
information is the difference in one physical system that makes a difference in
another physical system, thus constituting correlation between their configurations”
(Dodig-Crnkovic 2014a).

Among correlated systems, of special interest in our discussion of naturalized
cognition are agents — systems able to act that are capable of causing things to
happen, and among agents we will focus on living agents, that is cognizing agents,
based on Maturana and Varela’s understanding that life is identical with cognition®
(Maturana and Varela 1980). In what follows, it should become evident why it is so
that all living agents possess some degree of cognition.

The world as it appears (actualizes) for cognizing agents depends on the types of
interactions through which they acquire information. ‘“Potential information in the
world is obviously much richer than what we observe, containing invisible worlds
of molecules, atoms and sub-atomic phenomena, distant objects and similar. Our
knowledge about this potential information which reveals with help of scientific
instruments continuously increases with the development of new devices and the
new ways of interaction, through both theoretical and material constructs” (Dodig-
Crnkovic and Miiller 2011).

For an agent, potential information actualizes in present time to transform
into potential again. Transformations between potential and actual information

5The expression “registered” is borrowed from Brian Cantwell Smith (1998).

"More on current understanding of information can be found in the Handbook of the Philosophy
of Information (Benthem van and Adriaans 2008).

8Even though Maturana and Varela identify process of life with cognition, Maturana refuses the
information processing view of cognition. It should be noted that it is based on traditional concept
of information.
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(information process, computation) parallel transformation between potential and
kinetic energy. Kampis’ component systems (described later on) model information
processing in the cell that undergoes cycles of transformations of potential (original
informational structure) and actual (current process) in creating new informational
structure that is potentiality for a new process. Notions of potentiality and actuality
can be traced back to Aristotle, for whom potentiality presents a possibility,
while actuality is the change/activity/motion/process that presents realization of
that possibility. This relationship parallels being and becoming. Along Aristotle’s
transitions from potentiality to actuality, we discuss even the transition from
actuality to potentiality, closing the cycle of transformations. That would correspond
the cycle from original structure (information) via dynamical process (computation)
to a new structure (information).

10.3 The Hierarchy of Levels of Natural Information

This article provides arguments for the new kind of understanding, in the sense
of (Wolfram 2002), of lawfulness in the organization of nature and especially
living systems, emergent from generative computational laws of self-organization
based on the concept of agents. In order to understand the world, organization of
the parts in the wholes and interactions between them are crucial. That is where
generative processes come in such as self-organization (Kauffman 1993) (that acts
in all physical systems), and autopoiesis (Maturana and Varela 1980) (that acts in
living cells).

Self-organization and autopoiesis is effectively described by agent-based models,
such as actor model of computation (Hewitt 2012) that we adopt. Given that
processes in the cell run in parallel, the current models of parallel computation
(including Process calculi, Petri nets, Boolean networks, Interacting state machines,
etc.) need to adjust to modelling of biological systems (Fisher and Henzinger 2007).

Interesting framework for information processing in living systems is proposed
by Deacon (2011) who distinguishes between the following three levels of natural
information (for an agent), as quoted in Dodig-Crnkovic (2012c):

Information 1 (Shannon) (data, pattern, signal) (data communication) [syntax]
Information 2 (Shannon + Boltzmann) (intentionality, aboutness, reference, representation,
relation to object or referent) [semantics]

Information 3 ((Shannon + Boltzmann) + Darwin) (function, interpretation, use, pragmatic
consequence) [pragmatics]

Deacon’s three levels of information organization parallel his three formative
mechanisms: [Mass-energetic [Self-organization [Self-preservation (semiotic)]]]
with corresponding levels of emergent dynamics: [Thermo- [Morpho- [Teleo-
dynamics]]] and matching Aristotle’s causes: [Efficient cause [formal cause [final
causel]]], according to Dodig-Crnkovic (2012c). Deacon elaborates further that
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Because there are no material entities that are not also processes, and because processes
are defined by their organization, we must acknowledge the possibility that organization
itself is a fundamental determinant of physical causality. At different levels of scale
and compositionality, different organizational possibilities exist. And although there are
material properties that are directly inherited from lower-order component properties, it
is clear that the production of some forms of process organization is only expressed by
dynamical regularities at that level. So the emergence of such level-specific forms of
dynamical regularity creates the foundation for level-specific forms of physical influence.
(Deacon 2011, p. 177)

In the above passage, Deacon expresses the same view that we argue for: matter
presents a structure, while causality determines the dynamics of the structure (that
we interpret as computation).

In sum, the basic claim of this article is that nature as a network of networks
of agents computes through information processes going on in, hierarchically
organized layers. Informational structures self-organize through intrinsic processes
of natural embodied computation/morphological computation as presented in the
Introduction to Dodig-Crnkovic and Giovagnoli (2013).

10.4 The Hierarchy of Levels of Physical Computation

If the whole of nature computes, this computation happens on many different levels
of organization of the physical matter (Dodig-Crnkovic 2010, 2012b). In Burgin and
Dodig-Crnkovic (2011) three levels of generality of computations are introduced,
from the most general to the most specific/particular one, namely computation
defined as the following process:

1. Any transformation of information and/or information representation. This leads
to natural computationalism in its most general form.

2. A discrete transformation of information and/or information representation. This
leads to natural computationalism in the Zuse and Wolfram form with discrete
automata as a basis.

3. Symbol manipulation. This is Turing model of computation and its equivalents.

There are also spatial levels or scales of computations (Burgin and Dodig-
Crnkovic 2013):

1. The macrolevel that includes computations performed by current computational
systems in global computational networks and physical computations of macro-
objects.

2. The microlevel that includes computations performed by integrated circuits.

3. The nanolevel that includes computations performed by fundamental parts that
are not bigger than a few nanometers. The molecular level includes computations
performed by molecules.

4. The quantum level includes computations performed by atoms and subatomic
particles.
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For more details see Burgin and Dodig-Crnkovic (2013), presenting the current
state of the art on typologies of computation and computational models. By
systematization of existing models and mechanisms, the article outlines a basic
structural framework of computation.

10.5 Computation on Submolecular Levels

In Hewitt’s model of computation, Actors are defined as “the universal primitives
of concurrent distributed digital computation”. An Actor, triggered by a message it
receives, can make local <decisions>, create new Actors, and send new messages
(Dodig-Crnkovic 2014b).

In the Actor Model (Hewitt et al. 1973; Hewitt 2010), computation is conceived as
distributed in space, where computational devices communicate asynchronously and the
entire computation is not in any well-defined state. (An Actor can have information about
other Actors that it has received in a message about what it was like when the message was
sent.) Turing’s Model is a special case of the Actor Model. (Hewitt 2012)

The above Hewitt’s “computational devices” are conceived as computational
agents — informational structures capable of acting, i.e. causing things to happen.

For Hewitt, Actors become Agents only when they are able to “process expres-
sions for commitments including Contracts, Announcements, Beliefs, Goals, Inten-
tions, Plans, Policies, Procedures, Requests and Queries” (Hewitt 2007). In other
words, Hewitt’s Agents are human-like or if we broadly interpret the above capac-
ities, life-like Actors. However, we take all Hewitt’s Actors to be <agents> with
different competences as we are interested in a common framework encompassing
all living and artifactual agents.

Hewitt’s Actor model (Hewitt 2012) is relational and especially suitable for
modeling informational structures and their dynamics. It is based on models of
quantum and relativistic physics unlike other models of computation which are
based on mathematical logic, set theory, algebra, and similar.

Using actor model, quantum-physical objects such as elementary particles,
interacting through force carriers (mediating interactions) can be modeled as
actors exchanging messages. The <agency>in simplest physical systems such as
elementary particles is exactly their physical capacity to act, to interact and to
undergo changes.

As already discussed in Dodig-Crnkovic (2012a), within the framework of info-
computationalism, “nature is informational structure — a succession of levels of
organization of information for an agent.” This structure is different for different
agents. Physical reality, das Ding an sich exists as potential information for an agent
and actualizes through interactions. This leads to understanding proposed by von
Baeyer in his book Information: The New Language of Science (Baeyer von 2004)
where he states that “information is going to replace matter as the primary stuff
of the universe, providing a new basic framework for describing and predicting
reality”.
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The current work in quantum physicists on reformulating physics in terms of
information, such as proposed by Goyal (2012) in “Information Physics — Towards
a New Conception of Physical Reality” and (Chiribella et al. 2012) in “Quantum
Theory, Namely the Pure and Reversible Theory of Information™ give further sup-
port and motivation to info-computational approach. Statistical Thermodynamics
can be based on information (or rather lack of information) instead of entropy, as
presented in Ben-Naim (2008). In this context it is relevant to mention that even very
simple systems can act as <observers>, as described in Matsuno and Salthe (2011)
who present possible approach to naturalizing contextual meaning in the case of
chemical affinity taken as material agency.

However, if we want tools to manipulate physical systems, such as molecules in
the case of studies of origins of life, our tools must be more than theoretical models —
they will be computations “in materio” as Stepney ( 2008) called them, explaining:
“We are still learning how to use all those tools, both mathematical models of
dynamical systems and executable computational models and currently developing
‘computation in materio’”. That is the reason why physical/natural computing is so
important.

10.6 Molecular Computation, Self-Organization
and Morphogenesis

Both intrinsic/natural morphogenesis and designed/synthetic/artificial morphogen-
esis are instructive in the study of evolution and development as embodied
computational processes. At present, according to MacLennan “One of the biggest
issues that embodied computation faces is the lack of a commonly accepted
model of computation” (MacLennan 2010). As morphogenesis seems to have “the
characteristics of a coordinated algorithm” it is of special interest to understand
communication patterns of actors in a network that represents system with morpho-
genetic dynamics.
By investigating embryological morphogenesis — a supremely successful example of what

we want to accomplish — we can learn many lessons about how communication, control,
and computation can be done well at very small scales. (MacLennan 2010)

In the development of an organism, based on the DNA code together with
epigenetic control mechanisms, body of a living being is formed on a short time-
scale through morphogenesis that governs its development. On a long-time scale,
morphological computing governs evolution of species. “The environment provides
a physical source of biological body of an organism, as a source of energy and matter
for its metabolism as well as information, which governs its behavior.” According to
Dodig-Crnkovic (2008) nervous system and the brain of an organism have evolved
“gradually through interactions (computational processes) of simpler living agents
with the environment. This process is a result of information self-structuring”.
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The environment provides an agent with inputs of information and matter-energy,
“where the difference between information and matter-energy is not in kind, but
in type of use that organism makes of it.” as argued in Dodig-Crnkovic (2012d).
Since ‘“there is no information without representation”, (Allo 2008; Landauer
1991) all information is communicated through some physical carrier (light, sound,
molecules, ink on a paper, etc.). Thus, the same physical object can be used by an
organism as a source of information and a source of nourishment or matter/energy.
For example, many organisms use light just as source of information, while other
organisms use it in their metabolism as energy source for photosynthesis. Generally,
simpler organisms have simpler information structures and processes, simpler
information carriers and simpler interactions with the environment. In that sense,

(B)iotic information is nothing more than the constraints that allows a living organism to
harness energy from its environment to propagate its organization. (Kauffman et al. 2008)

According to Maturana and Varela (1980 p. 78), biological autopoetic “machine”
is “organized as a network of processes of production, transformation and destruc-
tion of components, which through mutual interactions continuously regenerate
the network that produced them.” Structural coupling with the environment for
autopoetic systems is described as continuous dynamical process and considered
as an elementary form of cognition possessed by all life forms.

Based on the above, we describe cognition as information processing in living
organisms, from cellular to organismic level and up to a social cognition. In this
framework information is a <substance>, computation is a process and we argue
for inseparability of structure/substance and its dynamics/process. If we search for
the source of energy necessary to build the constraints and turn environmental
resources into the work needed by organisms to run their metabolism, Ulanowicz’s
process ecology model offers an explanation: “Basically the answer is simply that an
aleatoric” event took place in which a constraint emerged that allowed a collection
of organic molecules to do the work necessary to propagate their organization”
(Ulanowicz 2009).

In the spirit of the work of Pfeifer, Lungarella and Sporns (Lungarella and Sporns
2005; Pfeifer et al. 2007), Bonsignorio (2013) studies evolutionary self-structuring
of embodied cognitive networks and proposes a framework for the modeling of
networks of self-organizing, embodied cognitive agents that can be used for the
design of artificial and ‘reverse engineering’ of natural networks, based on the
maximization of mutual information.

Biological systems are networks of interacting parts exchanging information.
They are shaped by physical constraints, which also present information for a
system, as argued in Kauffman et al. (2008). A living agent is a special kind
of <computational> actor that can reproduce and that is capable of undergoing “at
least one thermodynamic work cycle” (Kauffman 2000).

“Characterized by chance or indeterminate elements, Merriam-Webster online dictionary.



10 Information, Computation, Cognition. Agency-Based Hierarchies of Levels 151

Kauffman’s definition (that we adopt) differs from the common belief that
(living) agency requires beliefs and desires, unless we ascribe some primitive form
of <belief> and <desire>even to a very simple living agents such as bacteria. The
fact is that they act on some kind of <memory> and <anticipation>and according to
some <preferences> that might be automatic in a sense that they directly derive from
the organisms’ morphology (Ben-Jacob 2008, 2009, 2011). Nevertheless bacteria
show clear preferences for behaviors that increase organism’s survival.

Although the agents capacity to perform work cycles and so persist in the
world is central and presents the material basis of life, as Kauffman (2000) and
Deacon (2007) have argued, a detailed physical account of it remains to be worked
out, and especially relevant in this context is the phenomenon of abiogenesis.
Present article is primarily focused on the info-computational foundations of life as
cognitive computational taking place on informational structures at different levels
of organization of living systems.

10.7 Self-Organization and Autopoiesis

Understanding of cognition as a natural info-computational phenomenon, and
reconstruction of the origins, development and evolution of life, can be built on
the ideas of self-organisation and autopoiesis.

As described in Dodig-Crnkovic (2014b), the self-organisation as a concept was
first defined in the 1960s in general systems theory, and later on in the 1970s in
the theory of complex systems. Prigogine was the first to study self-organisation
in thermodynamic systems far from equilibrium, which demonstrate an ability
of non-living matter, previously considered to be inert and oppose movement, to
self-organize when supplied with energy from the environment. This process of
self-organization is what we describe as a form of morphogenetic/ morphological
computing.

Unlike Newtonian laws of motion, which describe inert matter that opposes any
change of its state of motion, self-organizing matter is active and spontaneously
changes. The ability of inorganic matter to self organize has been studied in Kauff-
man (1993, 1995). Kauffman’s research has inspired investigations into the origins
of life that connect the self-organisation of non-living chemical molecules with
the abiogenesis and autopoiesis of living beings. Self-organization as fundamental
natural process ongoing in all forms of physical systems provides mechanisms for
autopoiesis that is characteristic for living organisms.

For our understanding of life as cognition, the work of Maturana and Varela on
the basic processes and organization of life is fundamental. They define the process
of autopoiesis of a living system as follows:

An autopoietic machine is a machine organized (defined as a unity) as a network of
processes of production (transformation and destruction) of components which:
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(1) through their interactions and transformations continuously regenerate and realize the
network of processes (relations) that produced them; and

(ii) constitute it (the machine) as a concrete unity in space in which they (the components)
exist by specifying the topological domain of its realization as such a network.
(Maturana and Varela 1980) p. 78 (emphasis added)

As argued in (Dodig-Crnkovic 2014b) p. 7, “biological systems change their
structures and thereby the information processing patterns in a self-reflective, recur-
sive manner through autopoietic processes with structural coupling (interactions
with the environment) (Maturana and Varela 1980, 1992). Yet, self-organisation
with natural selection of organisms, as a basis for information that living systems
build up in their genotypes and phenotypes, is a costly method of <learning> by
adapting bodily structures. Higher organisms (which are “more expensive” to
evolve) have developed a capability of learning via nervous systems that enable
flexible memory with capacity of reasoning as a more efficient way to accumulate
knowledge. The transition from “genetic learning” (typical for more primitive forms
of life) to the cognitive skills on higher levels of organisation of the nervous system
balances the high “production cost” for increasingly complex organisms.”

Maturana and Varela claim that the process of autopoiesis that produces and
sustains life is the most basic cognitive process.

Living systems are cognitive systems, and living as a process is a process of cognition.
This statement is valid for all organisms, with or without a nervous system.” (Maturana and
Varela 1980) p. 13, emphasis added.

In the info-computational formulation, the process of “life as cognition”) () (is
understood as information processing in the hierarchy of organizational levels,,
starting with molecular networks, via cells and their organizations, to organisms
and their networks (Dodig-Crnkovic 2008).

For an agent, the fundamental level of reality is made of proto-information
(potential information) that represents the physical structure, while cognition is a
process that goes on in real time by information self-structuring (morphological
computing) caused by interactions. On a long-time scale it manifests itself as
meta-morphogenesis or morphogenesis of morphogenesis. It drives evolution in bio-
logical systems, as argued in Sloman (2013b) and Dodig-Crnkovic and Hofkirchner
(2011).

In sum, the info-computational model of living organisms connects two basic
ideas: self-organization and autopoiesis, generating the sub-cellular, cellular, multi-
cellular, organismic and societal levels of organization. Life processes are supported
and constituted by different sorts of morphological computation which on evolution-
ary time scales define the organisation/structures of living beings, including even
processes of meta-morphogenesis (Sloman 2013a).



10 Information, Computation, Cognition. Agency-Based Hierarchies of Levels 153

10.8 Morphological Computing in Component Systems:
“Computing in Materio”

Living organisms are described by Kampis as self-modifying systems that must be
modeled as “self-referential, self-organizing, “component-systems” (Kampis 1991)
which are based on self-generation and self-sustaining (autopoietic) processes and
whose behavior, is computational in a general sense, that presents generalization of
the Turing machine model. According to Kampis,

a component system is a computer which, when executing its operations (software) builds
a new hardware.... [W]e have a computer that re-wires itself in a hardware-software
interplay: the hardware defines the software and the software defines new hardware. Then
the circle starts again. (Kampis 1991) p. 223

Living systems are modular and organized in a hierarchy of levels that can be
seen as a result of propagation and self-organization of information (Kauffman et al.
2008). A detailed account of the present state of the art of hierarchy of levels/layers
can be found in Salthe (2012a, b). Within info-computational framework, levels
are informational structure with domain-specific computational modes (intrinsic
computation).

An example of a simple biological (component) system, studied in terms of
information and computation is described in Xavier et al. (2011) in the following
way:

Thus, each bacterium must be able to sense and communicate with other units in the

colony to perform its task in a coordinated manner. The cooperative activities carried out

by members of the colony generate a social intelligence, which allows the colony to learn

from their environment. In other words, bacterial intelligence depends on the interpretation

of chemical messages and distinction between internal and external information. Then

a colony can be viewed as a system that analyzes contextual information from its
environment, generates new information and retrieves information from the past.

This agrees with the results of Ben-Jacob (2008, 2009, 2011). Talking about
grand challenges in the research of natural computing, (Maldonado and Gémez Cruz
2014; Nunes de Castro et al. 2011) identify the central aim of this field to model and
harness the above information processes as natural computation.

10.9 Cognition as Cellular Morphological Computation

As a consequence of the received view that only humans possess cognition and
knowledge, the study of the cognition in other organisms is still in its beginnings
and the origins of <cognition> in first living agents is not well researched. However,
if we adopt Maturana and Varela’s generalized view of cognition, there are
different levels of <cognition>and we have strong reasons to ascribe simpler types
of <cognition>to other living organisms. Even such apparently simple organism
as bacteria “sense the environment and perform internal information processing
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(according to the internally stored information) to extract latent information
embedded in the complexity of their environment. The latent information is then
converted into usable or “active” information that affects the bacterium activity as
well as intracellular changes.” (Ben-Jacob 2009) Surprisingly perhaps as Pombo
et al. (2012) shows, also plants possess memory (encoded as a bodily structure) and
ability to learn (adapt, change their morphology) so that they can be said to possess
rudimentary forms of cognition.

As already mentioned, autopoiesis (Maturana and Varela 1980) is considered to
be the most fundamental level of cognition that is present even in the simplest living
organisms. Through evolution, increasingly complex organisms have developed
that are able to survive and adapt to their environment. Dodig-Crnkovic (2008)
argues that organisms are “able to register inputs (data) from the environment, to
structure those into information, and to structure information into knowledge. The
evolutionary advantage of using structured, component-based approaches such as
data — information — knowledge is based on improved response-time and efficiency
of cognitive processes of an organism”.

All cognition is embodied — which means that all cognition is based on the
bodily experience obtained through interaction with the environment. It holds for
all cognitive systems including microorganisms, humans and cognitive robots. More
complex cognitive agents build their knowledge both upon direct reaction to input
information, and on information processes directed by agents own choices based on
information stored in agent’s memory.

Information and computation (as processing of information) are basic structural
and dynamic elements that can be used to describe self-structuring of input
data (data — information — knowledge — data cycles). This interactive natural
computational process is going on in a cognitive agent in the adaptive interplay
with the environment. Information potentially available in the environment hugely
exceeds capacities of cognitive process of any agent. Thus living agents have
developed strategies to obtain relevant information. For fungi, content of a book
presents no information, but they may use a book as a source of energy (food), that is
a basis of information-dynamics for their own bodily structures. Similarly, sunlight
triggers just energy production by photosynthesis in plants, while in a human it can
trigger the reflection about the nuclear fusion in the sun.

There is a continuous development of morphology from simplest living organ-
ism’s automaton-like structures to most complex life forms elaborate interplay
between body, nervous system with brain and the environment (Pfeifer and Bongard
2006). Cognition is based on restructuring of an agent in the interaction with
the environment, while restructuring is morphological computing. From bacteria,
that organize in colonies and swarms via more complex multi-cellular organisms
and finally humans, cells are the basic cognitive units of a hierarchical distributed
process of cognition.
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10.10 Summary and Conclusions

To conclude, let me sum up the main points. Firstly, it is important to emphasize that
info-computational approach relies on naturalist methods and scientific results and
even though it assigns <cognitive> capabilities to all living beings, those capacities
correspond to empirically established behaviors of biological systems such as e.g.
bacteria (Ben-Jacob 2008) and thus, it has no connection to panpsychism, that is
the view that mind fills everything that exists. Info-computationalism is strictly
naturalistic understanding based on physics, chemistry and biology and does not
make any assumptions about things like a “mind of an electron”. Exactly the
opposite, it aims at explaining cognition, and subsequently even mind, through
entirely natural processes going on in physical/chemical/biological systems of
sufficient complexity.

In general, the ideal of this project is naturalization of information, computation,
cognition, agency, intelligence, etc.

Shortly, within the info-computational framework we start with the following
basic elements:

<Information>is “a structure consisting of differences in one system that cause
the difference in another system” (Dodig-Crnkovic and Giovagnoli 2013). In
other words, <information> is <observer> —relative. This definition is a synthesis
of Bateson and Hewitt definitions.

<Computation> is <information> processing i.e. the dynamics of <information>.

Both <information> and its dynamics <computation>exist on various levels of
organization or abstraction/resolution/granularity of matter/energy in space/time.

Of all <agents>, i.e. entities capable of acting that are capable of causing things
to happen, only living <agents> are characterized by the ability to actively make
choices and act on their own behalf to increase the probability of their own
continuing existence. This ability to persist as highly complex organization and to
act autonomously is based on the use of energy from the environment, as argued by
Kauffman and Deacon.

<Cognition> presents living <agency> consisting of all processes that assure
living agent’s organizational integrity and continuing activity, and it is equivalent
with life (Maturana and Varela 1980).

The dynamics of information leads to new informational structures through
self-organization of information that is morphological computation. Consequently,
corresponding to distinct layers of structural organization found in nature (elemen-
tary particles, atoms, molecules, cells, organisms, societies, etc.) there are distinct
computational processes of self-organization of information that implement/realize
physical laws (MacLennan 2011). This self-organization is the result of the inter-
actions between different agents/actors as nodes in interaction networks on many
levels of organization. In this model each type of actors (in themselves informational
structures) exchange messages of the form specific for their level of organization
(Dodig-Crnkovic and Giovagnoli 2013).



156 G. Dodig-Crnkovic

Finally, as Denning (2007) noticed, “computing is a natural science” nowadays,
and it assimilates knowledge from and facilitates development of natural sciences —
from physics and chemistry to biology, cognitive science and neuroscience. The
info-computational approach (Dodig-Crnkovic 2014a) can help to reconceptualize
cognition as a self-organising bio-chemical process in living agents, emerging from
inorganic matter and evolving spontaneously through information self-structuring
(morphological computation). This framework can improve understanding and
modelling of living systems, which hitherto have been impossible to effectively
frame theoretically because of their complexity, within the common naturalist
framework (Dodig-Crnkovic and Miiller 2011).
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Chapter 11

From Simple Machines to Eureka in Four
Not-So-Easy Steps: Towards Creative
Visuospatial Intelligence

Ana-Maria Olteteanu

Abstract This chapter builds an account of the cognitive abilities and mechanisms
required to produce creative problem-solving and insight. Such mechanisms are
identified in an essentialized set of human abilities: making visuospatial inferences,
creatively solving problems involving object affordances, using experience with
previously solved problems to find solutions for new problems, generating new
concepts out of old ones. Each such cognitive ability is selected to suggests a
principle necessary for the harder feat of engineering insight. The features such
abilities presuppose in a cognitive system are addressed. A core set of mechanisms
able to support such features is proposed. A unified system framework in line
with cognitive research is suggested, in which the knowledge-encoding supports
the variety of such processes efficiently.

Keywords Creativity ¢ Problem-solving ¢ Insight ¢ Visuospatial intelligence

11.1 Introduction

We are still far from building machines that match human-like visuospatial intel-
ligence, creative problem solving, or the more elusive trait of insight. Creativity
and creative problem-solving have fascinated humans ever since individuals able
to wield such skills with great prowess have existed, generating many legends and
anecdotes. Thus Archimedes is said to have had the insight of how to measure the
volume of a crown while immersing himself in a bathtub (Vitruvius Pollio 1914).
Watson has recounted to have dreamt of spiral staircases before settling on the
double helix solution for the problem of the structure of DNA. In a speech given at
the German Chemical Society, Kekulé mentioned to have day-dreamt an Ouroboros-
like snake biting its tail or a tibetan knot before discovering the structure of benzene
(Fig. 11.1).
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Fig. 11.1 A depiction of Kekulé’s day-dream: (a) The benzene molecule; (b) Ouroboros symbol
of a serpent eating its own tail; (¢) Tibetan knot

These introspective and sometimes second-hand accounts cannot be taken as
facts, but as descriptions of various phenomenological experiences of insight in
problem-solving (or assumptions about these experiences if the account is second-
hand). To discriminate the myth from the fact studies in empirical settings on insight
problem-solving and creativity have been employed (Maier 1931; Duncker 1945)
and creativity tests developed (Kim (2006) offers a review of one of the most used
such tests — TTCT — the Torrance Test of Creative Thinking).

Yet some of these accounts coalesce in their narrative, pointing at similar phe-
nomenology. This invites the question whether such similar phenomenology is the
result and indicator of a certain set of cognitive processes or the phenomenological
narrative converges because a narrative schema' about insight has become ingrained
in our culture. If the answer is the former, these accounts might hold some reverse-
engineering potential for cognitive and Al scientists, which could work their way
back from phenomenological effects,” using as a lead the cognitive processes that
have generated them, to further decypher the hidden mechanisms of insight.

Phenomenological complications aside, insight and creative problem-solving
generally figure amongst the pinnacle of human cognitive abilities (other animals
are capable of creative tool use (Kohler 1976) and some analogy-making (Gillan
et al. 1981), however we are unaware of any experimental set-up able to test

I'Several different proposals which aim to summarize all macro-narratives exist, a compelling one
being offered by Booker (2004), however for a computational treatment of micro narrative schemas
see Chambers and Jurafsky (2010). In the context of insight, the established narrative schema could
be about inspiration that comes to the discoverer after a lot of work in a spontaneous flash, in which
various parts of the problem are “perceived” together with similar inspiration-conducive objects.

2This can hold true only if the imagery which accompanies insight is real and in direct relation
to the causal processes of insight — i.e. visual imagery is perceived because visual components
of concepts are activated and worked upon with visual and other processes in order to propose a
solution.
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for insight in animals). Individuals able to produce great leaps of thought seem
to have always existed among us (Watson 2005, 2011), yet creative problem-
solving is something many normal human beings do on a day-to-day basis — when
putting a new mechanism together out of known parts, improvising a tool when
lacking one, coming up with new ideas, concepts and strategies, adapting older
problem-solving strategies to new situations. Compared to the achievements of
other primates or artificial intelligence agents, even the smallest human creative
intelligence accomplishments are remarkable.

We define productive cognition (cf. Wertheimer 1945) as the general ability
to create new knowledge, concepts, tools and objects, mechanisms, theories and
systems of thought. The emphasis here is on producing a new object or a solution
that has not existed or was not known or experienced before. Research into
creativity, creative problem-solving and insight, all aspects of productive cognition,
has valuable potential impact for both Al and cognitive science. The engineering
applications are related to smarter, more robust Al systems, which can solve tasks
in new environments with higher flexibility and an ability to adapt their previous
knowledge to the new problems they encounter. Ideally these agents should be able
to produce new information (concepts, theories, new relevant relations, hypotheses
on how to represent problems), the usability of which can then be tested by
classical computational paradigms. The benefits for cognitive science are in what
the computational modeling of and experimentation with such abilities can tell us
about how they function in their natural state in human cognition.

For artificial systems, creative problem-solving poses a high complexity chal-
lenge, bringing about the question how new types of knowledge and hypotheses can
be created that are actually useful, other than by logical inference. For cognitive
science, the issue is rather what kind of representations and processes enable the
functioning of such abilities. These two questions connect and this chapter deals
with them in tandem.

A unified framework (Newell 1994) aimed at exploring and implementing
cognitively-inspired creative problem-solving and insight is proposed. Here the
scientific interest is focused on determining what kind of knowledge representation-
processing pairs can generally support a variety of creative problem-solving pro-
cesses with more ease than previous computational paradigms. To determine such
types of knowledge representation and processes, an essential set of cognitive
abilities and the features they presuppose in a cognitive system is analysed. These
abilities each illuminate a different cognitive mechanism needing implementation in
order to reach higher abilities in productive systems. The way all these mechanisms
can be integrated to participate in the higher-level abilities of creative problem-
solving and insight is then shown. Furthermore, the framework is constructed
on an initial visuospatial inference ability, which if replicated should account at
the problem-solving level for similar phenomenological effects as Watson’s and
Kekulé’s accounts.

The rest of this chapter is organised as follows. Section 11.2 gives a flavor of the
matters which have preoccupied researchers in the various aspects of productive
cognition: creativity, creative problem-solving and insight, thus presenting the
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issues involved in the construction of a creative problem-solving framework.
Section 11.3 defines such a framework in four steps, elaborating on the cognitive
features which need implementation and proposing knowledge organization and
knowledge processing mechanisms, in a path from visuospatial intelligence to
insight. Section 11.4 concludes the chapter with a discussion about the cognitive
abilities the system presupposes as essential, a birds-eye view about how the
mechanisms that are proposed at each level interact, and future work required to
implement, test and refine this theoretical framework.

11.2 Aspects of Productive Cognition: Creativity, Creative
Problem-Solving and Insight

11.2.1 Creativity and Creative Problem-Solving

Boden (2003) distinguishes between historical creativity (h-creativity), which pro-
duces results original on the scale of human history, and psychological creativity (p-
creativity), which yields contributions that are creative from individual perspective.
She further differentiates between combinatorial and exploratory-transformational
creativity. Combinatorial creativity is a form of producing new, unusual combina-
tions or associations out of known ideas. Exploratory-transformational creativity is
an exploration of variations, and changes to/restructuring of the conceptual space.
As the term conceptual space is not very clearly defined (Ritchie 2001; Wiggins
2001), its compatibility with uses by others (Gidrdenfors 2004) is hard to determine.

Another lens through which creative processes are approached is that of the
difference between convergent and divergent thought (Guilford 1967). Convergent
thought is assumed to employ previously known reasoning strategies, familiar
heuristics and data, as to arrive to an accurate, logical solution. By contrast,
divergent thought is a search for many different potential solutions, with various
degrees of correctness, where the emphasis is on production of a diversity of
possible solutions, not on accuracy. Thus divergent thought is assumed to be creative
and associative in nature, exploring multiple possible solutions and courses of
action, and evaluating them in a quick and rough manner. Such solutions don’t
need to be logical or traditionally used heuristics — they can be associationist in
nature, using previous knowledge from different fields to enable what is popularly
described by the term of “leaps of thought”. However, this categorization is rather
abstract, with each category being able to contain many processes, and creative
problem-solving is the type of endeavor which assumes both abilities — a divergent
stage to find possible different solutions, and a convergent one to follow through the
consequences of such solutions.

Implicit processes are generally considered to play an important role in cre-
ative problem-solving, with some models focusing on explicit-implicit process
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interaction (Hélie and Sun 2010). The incubation stage in insight is considered to be
a process which takes place under conscious awareness. However, the relationship
between the concepts of divergent thought, implicit processing and the incubation
stage has not been clearly disseminated in the literature (though one can assume
some degree of overlap).

Important roles in creativity are played by analogy (Holyoak and Thagard 1996)
and metaphor (Lakoff and Johnson 1980, 1999). Both analogy and metaphor are
generally considered to be processes of transferring knowledge from a known field
(source) to a less known field (target), with various purposes, like: enriching the
unknown field, having some starting assumptions and knowledge to test, explaining
that field to a learner in a fashion which is connected with knowledge that the
learner already possesses as to allow for a quick comprehension start in the new
field, aesthetical effects (with comprehension consequences).

An important aspect that any theory of creativity needs to account for is
concept generation or composition. Concept formation literature in its various forms
(prototype theory — Rosch (1975), exemplar theory — Medin and Shoben (1988),
theory theory — Murphy and Medin (1985)) has not traditionally dealt with aspects
of concept composition. More recently theories have been proposed on this matter
(Aerts and Gabora 2005; Fauconnier and Turner 1998). The latter, a conceptual
blending account, proposes that various elements and relations from different
scenarios or concepts are blended in an unconscious process, as to produce new
concepts. This account finds its ancestry in Arthur Koestlers concept of bisociation
of matrices (Koestler 1964).

Concept discovery (Dunbar 1993) and restructuring (possibly linked to Boden’s
transformational creativity processes of restructuring the conceptual space) are
an important feature in other creative cognition activities — scientific discovery
(Nersessian 2008; Langley 2000; Klahr and Dunbar 1988) and technological
innovation (Thagard 2012).

The essential difference between creativity and creative problem-solving seems
to be one of evaluation type. Creativity is not enough to problem-solve, as an
emphasis is put on the utility of the solution, or of the new knowledge and
exploration forms (conceptual tools, ideas) created in the problem-solving process.
Ultimately, the aesthetic and originality value of a creative solution fades in front of
its utility or lack thereof.

This adds hardship in the construction of such a system, but helps in the
evaluation process. The constraints bring about the benefit that utility is measured
with more ease than aesthetic value and even originality. However, a system’s ability
to propose new solutions, hypotheses or approaches towards a problem, which might
not ultimately work in practice but are valid proposals with chances of success from
a human perspective, is a good enough criterion for satisficing creative problem-
solving demands.

A specific though challenging kind of creative problem-solving which might shed
some light on the cognitive mechanisms at work is insightful problem-solving.
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11.2.2 The General Problem of Insight

In the context of Boden’s taxonomy (Boden 2003), two types of insight can be
determined — a p-creative one (finding the representation which can lead to solving
a problem that has been previously solved by others) and a h-creative one (finding
a new solution or problem-representation altogether, a case found in the realm of
scientific discovery and technological innovation). In order to address the issue of
knowledge organization and processes a machine would need to possess to be able
the have insight the way humans do, we will focus here on red thread features
generally associated with insight (of both kinds). We will however address this
distinction again in Sect. 11.3.4.

Encyclopaedia Britannica defines (insight 2014) as:

immediate and clear learning or understanding that takes place without overt trial-and-error

testing. Insight occurs in human learning when people recognize relationships (or make
novel associations between objects or actions) that can help them solve new problems

In Sternberg and Davidson (1996) insight is:

suddenly seeing the problem in a new way, connecting the problem to another relevant
problem/solution pair, releasing past experiences that are blocking the solution, or seeing
the problem in a larger, coherent context

One example of an insight problem which has been studied in empirical settings
is the candle problem (Duncker 1945). The participant is given a box of thumbtacks,
a book of matches and a candle. The task is to fix the lit candle on a wall so that the
candle wax won’t drip onto the table below. The participants give various solutions,
including attaching the candle with a thumbtack to the wall, or glueing it with part
of the wax. The traditional correct solution to this problem is to use the box of
thumbtacks as a platform for the candle, and attach it to the wall using one of the
thumbtacks. The accuracy and speed of the participants in solving this problem
increases when the box of thumbtacks is presented empty, with the thumbtacks
out. A possible reason for this is that participants find it harder to see the box as
a platform while its affordance as a container is already used (through the box being
full).

In Maier’s classical two string problem (Maier 1931), the participants are put
in a room which has two strings hanging from the ceiling. Their task is to tie the
two strings together. It is impossible to reach one string while holding the other.
However, various objects are scattered across the room. The traditional solution
to this problem is to use a heavy object (normally the pliers), attach it to one of
the strings, then set that string in a pendular motion. Finding this solution can be
triggered by the experimenter touching the string, thus making salient its motion
affordance and directing the subjects to think of the string as a pendulum.

The literature on insight generally uses a four-stage process proposed by Wallas
(1926). The four stages are: familiarization with the problem, incubation (not
thinking about the problem consciously), illumination (the moment of insight)
and verification (checking if the solution actually works in practice). Whether the
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illumination phase presupposes sudden or incremental problem-solving processes is
still debated, and various researchers insist on the importance of various stages. A
good general set of characteristics for insight problems is proposed by Batchelder
and Alexander (2012):

1. They (insight problems) are posed in such a way as to admit several possible
problem representations, each with an associated solution search space.

2. Likely initial representations are inadequate in that they fail to allow the
possibility of discovering a problem solution.

3. In order to overcome such a failure, it is necessary to find an alternative
productive representation of the problem.

4. Finding a productive problem representation may be facilitated by a period of
non-solving activity called incubation, and also it may be potentiated by well-
chosen hints.

5. Once obtained, a productive problem representation leads quite directly and
quickly to a solution.

6. The solution involves the use of knowledge that is well known to the solver.

. Once the solution is obtained, it is accompanied by a so-called “aha!” experience.

8. When a solution is revealed to a non-solver, it is grasped quickly, often with a
feeling of surprise at its simplicity, akin to an aha! experience.

\1

The main challenge in replicating insight in artificial systems is that insight
problems are not search problems in the traditional (Newell and Simon 1972)
sense. The problems are ill-structured (Newell 1969) for a classical search-space
type of solving, and defining an appropriate representation is part of the solution
(cf. Simon 1974). For humans, this is the point where functional fixedness gets
in the way — with solvers getting stuck in representation types which are familiar
and sometimes seem implied by the problem, but are actually inappropriate. Thus
a machine replicating such phenomena will have to be able to do some form of
metareasoning and re-representation.

11.3 A Framework for Creative Problem-Solving Based on
Visuospatial Intelligence

Various work relates visuospatial intelligence to the creation of abstract concepts,
and to the process of abstract thought in general (Mandler 2010; Freksa 1991, 2013).
Thus Mandler proposes that complex abstract concepts are built developmentally
on top of already acquired spatial concepts. This would explain the pervasiveness
of spatial templates (Lakoff and Johnson 1980, 1999) in human metaphor, spatial
priming influences (Tower-Richardi et al. 2012) and shape bias (Landau et al. 1988;
Imai et al. 1994). In his analysis of 100 scientific discoveries (Haven 2006) and
100 technological innovations (Philbin 2005), Thagard (2012) draws the conclusion
that 41 out of the 100 scientific discoveries involve visual representation (spatial
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representations is unaccounted for in this analysis though some references are
made to kinesthetic ones), with the figure rising to 87 out of the 100 in the
technological innovations category. A cognitive architecture which proposes the
use of spatio-analogical representations (Sloman 1971) in the modeling of human
spatial knowledge processing, without linking them to creative problem-solving is
Schultheis and Barkowsky (2011).

The framework proposed here takes into account the importance of visuospatial
representations and processes, starting from the general hypothesis that analogical
representations and visuospatial (and structure-oriented) processes can be a good
representation-process pair for the recognition, manipulation and modification of
structures and relation-sets which is necessary in creative problem-solving. Such
mechanisms might also offer a bridge over the explanatory gap towards introspective
imagery phenomenology which sometimes accompanies moments of insight or
creative problem-solving. The rest of this section sets to explore whether abstract
creative problem-solving mechanisms can indeed build on simple visuospatial
inference mechanisms.

11.3.1 Step 1: Visuospatial Inference

In his paper, Sloman (1971) talks about “formalisation of the rules which make non-
linguistic, non-logical reasoning possible”. He also gives an example (Fig. 11.2) of
visuospatial inference. Figure 11.2a shows a mechanism made of two levers and
a pulley, the upward arrow being an indication of the initial direction of motion.
The reader should have no problem in visually inferring how the motion propagates
through the system, as to arrive at the result represented in Fig. 11.2b.

For a human with cultural familiarity with pulleys and levers, such an inference
is visually very simple. However, we take its simplicity for granted, as it comes from
our complex visual system’s ability to anticipate the motion of objects which it has
already learned. Visuospatial inference seems simple because it is a native feature
of the human visual system.

To be able to replicate such an ability in artificial intelligence terms, one would
have to implement some of the properties of the cognitive visual system that humans
generally take for granted. This problem could be translated in Al terms, by giving
an artificial system a subset of the six simple machines of antiquity (levers, wheel
and axle, pulleys, inclined planes, wedges and screws), together with visuospatial
and motor knowledge about each of them. The system could be asked to perform
a qualitative assessment of what a machine assembled out of some random set
of these components will do — the way the motion will propagate via the so
assembled mechanism. This is but a step away from Sloman’s example as it involves
visuospatial inference with multiple parts and can be thought of as a perceptual task.

This task can be solved by a system via a form of perceptual simulation. One can
encode motion affordances together with the pattern recognizer for each specific
object in such a way that seeing a certain simple machine shape triggers the
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Fig. 11.2 Sloman’s diagram of two levers and a pulley: (a) motion onset and (b) inference result

anticipation or simulation of motion in the artificial system. Whether the simulation
of the entire motion is necessary, or just the beginning and end result of such motion
can be accessed (once encoded) is something to be settled by cognitive empirical
investigation. The system then needs to be endowed with qualitative rules on how
motion propagation works between objects which are in contact, and the various
ways in which motion changes, or (allowed to learn from) motor simulations of
such transitions.

However, as mentioned before, this can be thought of as perceptual inference. In
order to talk about problem-solving, two other tasks can be given to the system, in
the same problem context:

— to put together a machine starting from a set of known components as to
propagate motion in a desired way (multiple solution possible)

— given a set of fixed components, to add missing components so that the
mechanism performs a certain type of motion at the end. The number of missing
components can be specified or unspecified, however they will be produced out
of the system’s memory of known machines.

Such problem-solving can rely on the same perceptual simulation (complete
or partial) and rules of motion transfer (thus can be entirely visuospatial). In fact
it could be a learning trial-and-error process of compositionally adding objects
together and checking their motion affordances. The compositionality features allow
for objects to be thought of both in terms of simple machines and new composed
machines with varying motion affordances.

The implementation of such a system will solve motion anticipation problems
with simple machines, and compositionality problems with simple or composed
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machines based on their capacity for motion. Besides having interesting features
for visuospatial reasoning (maybe an equivalent for a “ block-world” classical
problem setting), this problem sets the scene for the next steps towards creative
problem-solving and insight in a variety of interesting ways. It deals with simple
compositionality and decompositionality of objects: an object can be made of
various atomic simple machine parts and different compositionality structure can
mean different motion affordance, therefore the structure of assembly is essential.
The problem can allow for multiple solutions from the part of the solver, and it
requires use and manipulation of previous knowledge structures. It is solved based
on affordance and compositionality. These features are primitives which we will
relate to in the next steps.

11.3.2 Step 2: Creative Use of Affordance

Humans are used to perceiving the world not just in terms of motion anticipation, but
also in terms of the affordances (Gibson 1977) that various objects can offer a user,
depending on the task at hand. Knowledge of affordances can be considered as a part
of commonsense knowledge which displays cultural aspects (as various cultures can
be more accustomed to certain objects or tools than others). The cultural variation
element does not play a role here, as knowledge of affordances can be treated as
a knowledge database which can take whatever form, and thus belong to whatever
culture.

Of interest here is the human ability to make creative use of object affordances.
When trying to find something to pour liquid in, to carry liquid with and drink
from, in conditions in which no cup is available, humans can use a pot, a bucket,
or — depending on how desperate the circumstances are — a boot. When wanting to
put nails in the wall in the absence of a hammer, humans can use shoes, stones of
appropriate size, or other objects. Thus humans can creatively solve problems of
the following form: Find an object with a certain affordance, when the object(s)
you normally use is not available. Humans can find such objects even if the
objects are not normally associated with such an affordance, by speculating on the
various properties objects have, and their knowledge about the properties which are
normally associated with the affordance.

This type of problem represents a way of making creative inference and use of
the affordance properties of objects. In the following we will propose the rough
principles of a mechanism for suggesting useful objects in such problems to an
artificial agent.

Even simple visuospatial properties such as object shape can lead to inference
about affordance. The phenomenon of shape bias (Landau et al. 1988; Imai et al.
1994; Samuelson and Smith 1999), in which children extend names from known
to unknown objects based on shape, shows that the human brain considers shape
features very important in the context of objects and tools — possibly because of
a connection between shape and affordance in these domains. In what follows, we
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will propose a mechanism which makes good use of shape in proposing hypotheses,
though this can and should be refined to contain more detailed properties which are
in a direct relationship with objects’affordances.

To solve such a problem in the spirit of grounded knowledge (Barsalou and
Wiemer-Hastings 2005; Barsalou 2003; Girdenfors 2004), we propose to represent
the various objects and tools that the agent knows as distributed concepts. The
concepts are distributed over a set of spaces — an affordance space, a visual feature
space, and a semantic tag space. Each of these spaces will be organized by similarity,
though the similarity metric would be different, depending on what the space
contains. Thus visuospatial feature spaces will be organised in terms of feature
similarity (of shape, color), verbal tags in terms of semantic or context similarity,
affordance spaces in terms of motor trajectories or proprioceptive routines, etc.
These spaces could be encoded as self-organised maps (Kohonen 1982). The
recognition of an object, or activation of a concept in such a system, would mean
the associated activation of points or regions in these spaces (Fig. 11.3). Thus, each
concept would be an activation of features over different dimensions, part of which
will be more sensory oriented (e.g. the visual features spaces), more functionally and
bodily oriented (affordance and motor spaces), and more knowledge oriented (the
semantic spaces). Such a cognitive concept could be triggered in a variety of ways:
(1) via the semantic tag (its name), the activation of which would spread energy in
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Fig. 11.3 Activation of the concept “cup” over two visuospatial feature spaces, a semantic tag
space and an affordance space
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the other direct links (how the object looks like, what functions does it normally
perform), (ii) via vision input, or (iii) a query related to the affordance which is
required.

We prefer such a type of knowledge encoding because the meaning of a concept
in such a system becomes grounded in the feature maps, affordance spaces and
semantic spaces which we are using (the symbolic paradigm which assumes the
meaning is in the verbal form of the concept is refused). However, the proposed
mechanism is a hybrid mechanism, as a concept can be interpreted as a symbol
(where a symbol is a collection of features, grounded in subsymbolic processes).

Such knowledge organization is useful in two ways. One is that the concept
can be activated in different ways, with the entire knowledge network retained
about it becoming active. Navigation between such different types of knowledge
about one object is possible in natural cognitive systems. Such activation also
implies a second benefit, that comes from the encoding in similarity-based maps
— navigation between different encoded concepts based on different types of
similarity. Thus, when a cup is the direct activation for a certain type of affordance,
other neighborhood object shapes are activated as well, with the new object being
able to act as a creative substitute, though it might not constitute a traditional
solution, nor the type of object the user normally applies in such circumstances.

When a request is made to the system to find an object that is required for
a certain affordance (Fig. 11.4), the system will first activate the corresponding
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Fig. 11.4 Affordance-based system in action
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concepts linked to that affordance (the request is in fact the activation), with the most
familiar objects receiving the highest activation. Then the solution object(s) can be
searched for in the environment visually. When such a search fails, the threshold
of the search drops, and the object will search for something of a similar shape to
the familiar solution-object (by quantitative (Forsyth and Ponce 2003) or qualitative
(Falomir et al. 2013) means) or/and to objects which are encoded closely to that
object in its shape knowledge map. Thus, creative solutions which are not what one
set out to search for exactly but can fulfill the function nonetheless can be obtained
with limited knowledge, in a visual manner.

11.3.3 Step 3: Concept Generation and Structure Transfer

The third step in this quest for visuospatial creative problem-solving and insight is
treated here in two parts. Part (a) deals with the generation of new concepts, and
part (b) with problem structure transfer.

11.3.3.1 Step 3A: Generation of New Concepts

Humans can make analogies, use metaphors (Lakoff and Johnson 1980, 1999), blend
concepts (Fauconnier and Turner 1998) and sometimes put together features of pre-
viously known concepts to create entirely new concepts (like meme, impressionism
or recursive), or invent entirely new objects from previously accessible parts or
elements.

In making analogies, an important role seems to be played by concept structure
and ability to compare and structurally align source and target domain (Gentner
1983, 2010). Spatial schemas are proposed by Lakoff and Johnson (1999) as a
process of metaphor creation.

In the proposed framework, the relevant cognitive properties required for concept
generation are:

» Associativity of similar concepts on various feature spaces (previously explained
in step 2),

» Ability to map a structure in a different feature space, and

* Ability to build concepts compositionally.

In what follows, a few visuospatial processes which make concept generation
possible in an artificial system are proposed.

The first process consists of using a previously observed visuospatial relation as
a template. Consider an artificial intelligence system that has encoded the relation
“chaining” as a visuospatial object — starting from the analogical representation of
a chain. The relations encoded in the analogical representation of the object can
be used as a template for other units than chain links. First the relations could be
extrapolated to similarly shaped objects — like a hoop of string and a scissor’s eye
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Fig. 11.5 Use of analogical representation of a “chain” as a template for the “chaining” relation

(Fig. 11.5). In the proposed framework, due to visual similarity in the knowledge
encoding, such an inference would be natural. The system would thus propose to
extend the previous relation, using its template, to other visually similar objects.
Such inferences will hold only part of the time, but this is an example of productive
reasoning (reasoning which creates a new arrangement of objects in this case),
and of transforming the visuospatial analogical representation of a concept into a
template for new object arrangements.

Though initially applied to objects with similar visual features, this particular
template-relation can be applied at various levels of abstraction, up to concepts like
“chaining of events”.

Of course not all abstract concepts are derived from visuospatial analogical
representation. The point here is to show how some can be derived, as an analogical
representation is a very economic way to store relations, and can be used as a
structural template for creating new concepts.

A second process that can be used for concept generation is compositionality
over such templates. Thus, take the two-tuple relation “bigger-than” as observed in
or learned from an example of two trees (Fig. 11.6). An artificial system could match
it by size or shape similarity, or use the principle of chaining to a second bigger than
relation of two other trees. Via compositionality, this would lead to a three (or more)
tuple relation, which would lead to a representation of the concept of “growth”. This
visuospatial representation of the concept could be used as a template again, via the
first process, and adapted to a variety of different domains.

Some such visuospatial datastructures could be compressed to a small subset of
features which are consistent across templates, like an upward arrow and a definition
of contour (Fig. 11.7). This could be used as an iconic compressed trigger that can
activate the concept and stand in for it.
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Fig. 11.6 Compositionality
of relation — from
“bigger-than” to “growth”

Fig. 11.7 Transition from (a)
growth template
representation, which is (b)
adapted to a different concept
and (c¢) compressed
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Thus analogical visuospatial representations can act as mechanisms for concept
generation by being used as templates or in applying compositional principles
based on similarity principles or visual routines. Such a system could keep track
of relations between such templates based on its own experiences with concept
generation in a visuospatial semantic map (where semantic is to be understood
as meaning relations between such templates), and attempt future composition
principles based on such learning (or return to a decomposed form where necessary).

Concept blending can also be implemented by treating concepts as distributed
structures over feature spaces, in which the two concepts which participate in the
blend each contribute in a varying degree to the structure (and positioning on the
feature space) of the new concept. However, for the current purposes, the description
of creation and proposal of new structures proved to be a more interesting cognitive
feat.

11.3.3.2 Step 3B: Problem Structure Transfer

Problems like the tower of Hanoi are easily solved by people that have understood
their heuristics, no matter the shapes of the objects used in the problem presentation.
This leads to the obvious conclusion that people are able to detach heuristics from
the surface features of the problem, and understand problems in terms of their
structure and the heuristics that apply to various structures. General heuristics, like
means-end analysis or divide and conquer, are routines which can be deployed
independent of the domain. However, the surface features of a problem do play a
role in problem-solving, certain problems being solved with much more ease when
presented in a certain visual form than in isomorphic but different feature forms
(Zhang 1997).

Thus, for humans, a case can be made for both the importance of problem
structure, and the importance of surface features in problem-solving efficiency. A
system constructed in this proposed framework could deal with both, as follows.
A solved problem can be encoded as a distributed structure over the objects and
concepts the problem contained (at a lower level their features), the algorithmic
steps that have been taken (at a lower level affordances or succesions of motor
routines) and the various relationships that have been established during this solving.
In the case of a new problem, similar on enough of the encoded properties above,
the system could trigger via a form of pattern-completion the previous problem
structure — and attempt a subset of similar steps or relation-formation.

The structure could also be elicited in a more direct fashion via remarking upon
structural similarities between the problem at hand and a previously solved problem
(not on features of the participating objects), or on sets of relations which are
common to both. In both cases, the structure of a previously solved problem would
thus be transferred to the problem at hand. In case objects of the problem solution
or structure are missing, objects and concepts with similar affordances can be used
(due to the ability to de-chunk the problem offered by distributed representations).
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The essential points in knowledge organization for problem structure transfer are
thus threefold:

¢ It requires the encoding various problem-structures together with their respective
component elements and problem-solving procedures (set of affordances, algo-
rithm)

¢ The ability to match problems to previously known problem-structures and their
solutions

* The ability to decompose or recompose problems, as to use different structure-
affordance pairs

The last point is further tackled in the issue of insight, when one problem
representation structure is not enough.

11.3.4 Step 4: Insight Revisited

As previously discussed, insight is a problem of re-representation, such problems
are not solvable via normal search spaces, and their solving doesn’t seem to proceed
in a step-wise fashion: unlike in non-insight problems, the problem-solvers cannot
predict their level of progress or their closeness to the solution (Metcalfe and Wiebe
1987).

In insight problems, it is as if finding the right problem representation is the
solution itself. A good representation affords insight directly, by providing the solver
with the ability to make the inferences which will lead to the solution. It is thus
assumed here that in such problems a form of metareasoning or meta-search happens
over the representational structures which can be fitted to the problem, in order to
find the one which most obviously affords the (inferences towards the) solution.

In many insight problems, the main problem is thus finding the right problem
structure, which is not the normal problem structure that will be ellicited by the
objects presented. The various objects participating in the problem have been
involved in the commonsense knowledge or can be involved in the commonsense
inference of a human being in a variety of problem structures, they posses a variety
of affordances. In this framework, insight is defined as a matter of navigating these
ellicited structure-affordance pairs until the right one is found (from which further
inferences can proceed to a solution). The meta-search space in this framework
is richly informed. It encodes the knowledge of the system, together with its
similarity metrics over various spaces, and distributed structures with generative
compositional properties. The movement in such a search space happens in various
dimensions via the similarity of features, context (semantics) and affordance
(function) of the distributed objects and templates. This type of knowledge encoding
permits informed search via movement through similar structures, or similar objects
and the structures they are part of, and creation of new conceptual tools, relations
and objects. The right problem structure can be found when searching for a
affordance, for similar structures, relations or objects/concept sets.
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A different case is that of scientific discovery problems (another variety of the
Eureka step), in which it is natural to assume that the “right” problem representation
is not in fact found, but created. This framework allows for problem templates to be
decomposed, blended, put together, and missing parts to be created out of similarly-
affording structures, until a representation is found or created. To close the circle, in
the light of the previous steps and the knowledge encoding and processes previously
used, solving insight problems (in both forms) becomes somewhat similar to putting
simple machines together. The search this time is not one over the known set of
simple machines, for the appropriate machine or set of machines to be fitted to the
problem of obtaining a certain type of motion or affordance, but for the appropriate
problem representation, allowing for compositionality from problem representation
fragments, in order to find a problem representation which affords a solution or set
of inferences. The motor affordances of the various simple machines are replaced in
this case with the affordances the various problem templates can solve.

11.4 Discussion

Productive systems deal in a flexible fashion with the problems they encounter, as
to be able to propose new possible solutions based on the knowledge at hand. The
framework explored here presupposes a few cognitive properties as being essential
for building efficient such productive systems. Efficiency is understood here as
computational ease of processing. The proposed framework supports through its
knowledge encoding exactly such types of search for a creative solution and re-
representation, as to account for cognitive economy principles.

One of these properties is a multidimensional (multisensorial) encoding of
concepts (Barsalou 2003), which allows for dynamic memory access based on
affordances, visual features or semantic tags. Beside such dynamic access, dis-
tributed encoding of concepts allows further grounding in learned, similarity-based
organized knowledge and associativity (with traditions in hebbian learning (Hebb
1949), semantic networks (Sowa 1992) and associationism). Such grounding allows
for easy navigation of the knowledge space. In a sense, the knowledge space thus
becomes the equivalent of a search space in classical problem-solving. However, not
all possible states or solutions are mapped. The knowledge encoding merely acts as
a map which enables the aforementioned processes to produce more knowledge in
a structured, organised manner.

A connected third cognitive property assumed here as essential is flexible,
relaxed pattern-recognizing constraints; this allows for non traditional but similar
objects to be recognized and accepted as solutions. Essentially this is related
to the reality of our imperfect, constructive memory. Though when compared
to its machine counterparts a less than optimal part of the human experience,
human memory and its imperfections support learning, interpretation and re-
interpretation, classification and re-classification, generalization and, by extension
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in this framework, creativity and creative problem-solving (rather than a perfect
ability to reproduce the things we have perceived with accuracy).

The four steps presented here construct in a coarse manner the necessary abilities
of a productive system from the ground up.

e Step one — visuospatial inference — associates visual features, shapes and
structures (for the 3D case) with motion affordances, in order to enable motion
anticipation in a mechanism composed of simple known parts. This allows simple
compositionality principles of affordance, and pattern-fill principles when a small
number of objects is given and a mechanism has to be constructed.

» Step two — creative use of affordance — extends the distributed concept encoding,
with supplying feature maps organized on similarity principles. This supports a
natural search for objects with similar features, affordances or that have been
experienced in similar contexts. The flexible threshold in pattern recognition,
together with the associativity links enable solutions to be proposed that are not
traditional.

e Step (3a) deals with processes for generating new concepts. This creates a
conceptual map in which some analogical representations can be used as (1)
relation-templates, (2) compositional units that together create new relations,
and (3) compression to essentialized visual features. Moreover, the map can
keep track of the generative process, and keep relations between the analogical
representations which have created new representations through such processes.

* Step (3b) discusses transfer of problem structure into a different problem, based
on affordance knowledge (and other possible similarities) of the two structures.
This gets closer to the principles of meta-representation, which is attained in step
4. Step (3b) deals with the ability to transfer a set of heuristics, or a problem
structure, rather than a small set of relations, that are enclosed in an analogical
representation, like in (3a).

* Step 4 puts all the aforementioned principles together. All concepts are grounded
in similarity-based maps, where the similarity metric depends on the type of
map itself (be it a feature map, an affordance map or a semantic context
map). New concepts, conceptual objects and sets of relations are generated as
in step (3a), and kept in relations to each other. Problem structures can be
transferred in other object spaces. This type of knowledge representation and the
aforementioned processes allow for easy re-representation and creation of new
problem templates. The framework at this level supports meta-search over known
pairs of problem-structure and affordances, enabling the system to find a suitable
representation for the problem at hand. If no such problem-structure exists or is
known, the knowledge representation and processes allow the system to attempt
and create a problem structure compositionally out of known representations.

This framework needs to be implemented and tested. Success criteria of the system
are clearly presented in each step: visuospatial inference, creative use of affordance,
generation of new concepts, use of problem structure transfer, and solving insight
problems, or problems which require creative re-representation. There is a possible
difference between the latter two. Insight problems in their reduced form might
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require only finding a good representation which affords the solution — though this
representation might be quite far away from the natural representation a human
would assume for that problem. Problems requiring creative re-representation
are closer in kind to scientific discovery, technological innovation, or problems
requiring significant change in the conceptual space and tools of the cognitive agent.
In these cases, a new representation might need to be created out of known parts, and
only once this representation is put together, the parts afford the solution together.

Many of this framework’s principles are in line with current cognitive empirical
research and theory. However, the cognitive assumptions and and their ensuing
implications need to be tested, to see if the framework can hold as a cognitive theory
of creative problem-solving, or is a cognitively inspired framework for an artificial
intelligence system.

In conclusion, a theoretical framework has been proposed, with a type of
knowledge representation and organization meant to support in a unified manner
a variety of creative problem-solving abilities and the re-representation features
necessary to simulate insightful problem-solving. Each of the various steps has been
chosen to underlie an instrumental cognitive ability or mechanism further used in
higher level abilities. This theoretical proposal has also been linked to visuospatial
types of inference, which might help bridge the gap to the phenomenological
experiences of visuospatial insight.
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Chapter 12
Leibniz’s Art of Infallibility, Watson,
and the Philosophy, Theory, and Future of Al
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Abstract When IBM’s Deep Blue beat Kasparov in 1997, Bringsjord (Technol Rev
101(2):23-28, 1998) complained that despite the impressive engineering that made
this victory possible, chess is simply too easy a challenge for Al, given the full
range of what the rational side of the human mind can muster. However, arguably
everything changed in 2011. For in that year, playing not a simple board game,
but rather an open-ended game based in natural language, IBM’s Watson trounced
the best human Jeopardy! players on the planet. And what does Watson’s prowess
tell us about the philosophy, theory, and future of AI? We present and defend
snyoptic answers to these questions, ones based upon Leibniz’s seminal writings on
a universal logic, on a Leibnizian “three-ray” space of computational formal logics
that, inspired by those writings, we have invented, and on a “scorecard” approach to
assessing real Al systems based in turn on that three-ray space.
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12.1 Introduction

When IBM’s Deep Blue beat Kasparov in 1997, Bringsjord (1998) complained
that despite the impressive engineering that made this victory possible, chess is
simply too easy a challenge for Al, given the full range of what the rational side
of the human mind can muster.! Systematic human cognition leverages languages
and logics that allow progress from set theory to cutting-edge formal physics, and
isn’t merely focused on an austere micro-language sufficient only to express board
positions on an 8 x 8 grid, a small set of simple rules expressible in a simple set of
first-order formulae, and strategies expressible in off-the-shelf techniques and tools
in AL Even techniques for playing invincible chess can be expressed in logical
systems well short of those invented to capture aspects of human cognition, and the
specific techniques used by Deep Blue were standard textbook ones (e.g., alpha-beta
“boosted” minimax search; again, see Russell and Norvig 2009).

However, arguably everything changed in 2011. For in that year, playing not
a simple board game, but rather an open-ended game based in natural language,
IBM’s Watson trounced the best human Jeopardy! players on the planet. What
is Watson, formally, that is, logico-mathematically, speaking? And what does
Watson’s prowess tell us about the philosophy, theory, and future of AI? We present
and defend snyoptic answers to these questions, ones based upon Leibniz’s seminal
writings on a universal one, on a Leibnizian “three-ray” space of computational
formal logics that, inspired by those writings, we have invented, and on a “score-
card” approach to assessing real Al systems based on turn on that three-ray space.
It’s this scorecard approach that enables a logico-mathematical understanding of
Watson’s mind. And the scores that Watson earns in turn enables one to predict
in broad terms the future of the interaction between homo sapiens sapiens and
increasingly intelligent computing machines. This future was probably anticipated
and called for in no small part by the founder of modern logic: Leibniz. He thought
that God, in giving us formal logic for capturing mathematics, sent thereby a hint
to humans that they should search for a comprehensive formal logic able to capture
and guide cognition across the full span of rational human thought. This—as he put
it—"“true method” would constitute the “art of infallibility,” and would “furnish us
with an Ariadne’s thread, that is to say, with a certain sensible and palpable medium,

'Note that we say: “rational side.” This is because in the present essay we focus exclusively
upon what Leibniz aimed to systematize via his “art of infallibility.” Accordingly, in short, we
target systematic human thought. (In modern terms, this sphere could be defined ostensively, by
enumerating what is sometimes referred to as the formal sciences: logic and mathematics, formal
philosophy, decision theory, game theory, much of modern analysis-based economics (to which
Leibniz himself paved the way), much of high-end engineering, and mathematical physics). We
aren’t concerned herein with such endeavors as poetry, music, drama, etc. Our focus shouldn’t be
interpreted so as to rule out, or even minimize the value of, the modeling of, using formal logic,
human cognition in these realms (indeed, e.g. see Bringsjord and Ferrucci 2000; Bringsjord and
Arkoudas 2006); it’s simply that in the present essay we adopt Leibniz’s focus.

2Such as those nicely presented in Russell and Norvig (2009).
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which will guide the mind as do the lines drawn in geometry and the formulae for
operations which are laid down for the learner in arithmetic.””? In modern terms,
Leibniz would say that God’s hint consists in this: The success of purely extensional
first-order logic in modeling classical mathematics indicates that more expressive
logics can be developed in order to model much more of human cognition.

Our plan for the remainder is this: Next (Sect.12.2), after recording our
agreement with Leibniz that mechanical processing will never replicate human con-
sciousness, we briefly summarize, in four main points, Leibniz’s original conception
of the art of infallibility, and encapsulate his dream of a comprehensive logico-
mathematical system able to render rigorous and infallible all human thinking. In
Sect. 12.3, we present our “three-ray” Leibnizian logicist framework for locating a
given Al system. Inspired by this three-ray framework, we then (Sect. 12.4) provide
a more fine-grained, engineeringish theory of Al systems (the aforementioned
scorecard approach), and in Sect. 12.5 use this account to explain what Watson
specifically is. We end with some brief remarks about the future of Al

12.2 Leibniz, Logic, and ‘“The Art of Infallibility”

12.2.1 Disclaimer: Leibniz’s Mill and Strong vs. Weak Al

It may be important to inform the reader that at least one of us believes with Leibniz
not only that physicalism is false, but believes this proposition for specifically
Leibnizian reasons. Leibniz famously argued that because materialism is committed
to the view that consciousness consists in mere mechanical processing, materialism
can’t explain consciousness, and moreover consciousness can’t consist merely in
the movement of physical stuff. The argument hinges on a thought-experiment in
which Leibniz enters what has become, courtesy of this very experiment, a rather
famous mill.* (The experiment and the anti-physicalist conclusion drawn from it,
are defended in Bringsjord 1992.) And he also argued elsewhere, more specifically,
that self-consciousness is the insurmountable problem for materialism. Note that
Leibniz in all this argumentation takes aim at mechanical cognition: he argues

3From “Letter to Galois,” in the year 1677, included in Leibniz and Gerhardt (1890).
“In Leibniz’s words:

One is obliged to admit that perception and what depends upon it is inexplicable on
mechanical principles, that is, by figures and motions. In imagining that there is a machine
whose construction would enable it to think, to sense, and to have perception, one could
conceive it enlarged while retaining the same proportions, so that one could enter into it,
just like into a windmill. Supposing this, one should, when visiting within it, find only parts
pushing one another, and never anything by which to explain a perception. Thus it is in
the simple substance, and not in the composite or in the machine, that one must look for
perception. (§17 of Monadology in Leibniz 1991)
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that no computing machine can be self-conscious.’ In other words, Leibniz holds
that Strong Al, the view that it’s possible to replicate even self-consciousness and
phenomenal consciousness in a suitably programmed computer or robot, is false.
Note that in our modern terminology, that which is computationally solvable (at least
at the level of a standard Turing machine or below) is the same as that which is—as
it’s sometimes said in our recursion-theory textbooks—mechanically solvable.

The previous paragraph implies that the Leibnizian “three-ray” conception of
Al that we soon present, as well as our remarks about the future of Al following
on that—all of this content we view to be about Weak Al (the view that suitably
programmed computers/robots can simulate any human-level behavior whatsoever),
not Strong AL® Put another way, the outward behavior of human persons, when
confirmed by a well-defined test, can be matched by a suitably programmed
computing machine or robot thereby able to pass the test in question. This specific
“test-concretized” form of Weak Al has been dubbed Psychometric AI (Bringsjord
and Schimanski 2003; Bringsjord 2011; Bringsjord and Licato 2012).

12.2.2 Central Aspects of Leibniz’s Dream

While Leibniz is without question the inventor of modern logic, the full details of his
original inventions in this regard aren’t particularly relevant to our purposes herein.
What is relevant are four aspects of this invention—aspects that we use as a stepping
stone to create and present our aforementioned “three-ray” conception.” These four
aspects are key parts of Leibniz’s dream of a system for infallible reasoning in
rational thought. Here, without further ado, is the quartet:

I. Universal Language (UL) for Rational Thought  Starting with his dissertation, Leib-
niz sought a “universal language” or “rational language” or “universal characteristic” in
which to express all of science, and indeed all of rational thought. (We shall use ‘UL’
to refer to this language.) Time and time again he struggled with particular alphabets
and grammars in order to render his dream of UL rigorous, and while the specifics

SLeibniz came strikingly close to grasping universal or programmable computation. But nothing
we say here requires that he directly anticipated Post and Turing. This is true for the simple reason
that Leibniz fully understood de novo computation in the modern sense, and also was the first to
see that a binary alphabet could be used to encode a good deal of knowledge; and the properties he
saw as incompatible with consciousness are those inherent in de novo computation over a binary
alphabet {0, 1}, and in modern Turing-level computation.

Bringsjord (1992) is a book-length defense of Weak Al and a refutation of Strong Al

7With apologies in advance for the pontification, Bringsjord maintains that there is really only one
right route for diving into Leibniz on formal logic: Start with the seminal (Lewis 1960), which
provides a portal to the turning point in the history of logic that bears a fascinating connection to
Leibniz (since Lewis took the first thoroughly systematic move to intensional logic, anticipated by
Leibniz). From there, move into and through that which Lewis himself mined, viz. (Leibniz and
Gerhardt 1890). At this point, move to contemporary overviews of Leibniz on logic, and into direct
sources, now much more accessible in translated forms than in Lewis’s day.
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are fascinating, he never succeeded—but modern logic is gradually moving closer and
closer to his dream. An important point needs to be made about the universal language
of which Leibniz dreamed:

Pictographic Symbols & Constructs Allowed  Leibniz knew that UL would have to
permit pictographic symbols and constructs based on them. When most people think
about modern formal logic today, they think only of formulae that are symbolic and
linguistic in nature. This thinking reflects an ignorance of the fact that plenty of work in
the rational sciences makes use of diagrams.®

II. Universal Calculus (UC) of Reasoning for Rational Thought  Leibniz envisioned a
system for reasoning over content expressed in UL, and it is this system which, as
Lewis (1960) explains, is the true “precursor of symbolic logic (p. 9).” Indeed, Lewis
(1960) explains that there are seven “principles of [Leibniz’s] calculus” (= of—for
us—UC), and some of them are strikingly modern. For instance, according to Principle
1, that “[W]hatever is concluded in terms of certain variable letters may be concluded
in terms of any other letters which satisfy the same conditions,” we are allowed to make
deductive inferences by instantiating schemas, a technique at the very heart of Principia
Mathematica, and still very much alive today.’

III. Distinction Between Extensional and Intensional Logic =~ Part of Leibniz’s seminal
work in logic is in his taking account of not only ordinary objects in the extensional
realm, but “possible” objects “in the region of ideas.” Leibniz even managed to make
some of the key distinctions that drive the modal logic of possibility and necessity.
For example, he distinguished between things that don’t exist but could, versus things
that don’t exist and can’t possibly exist; and between those things that exist necessarily
versus those things that exist contingently. Clearly the influence of Leibniz on the
thinker who gave us the first systems of modal logic, C.I. Lewis, was significant.!’

IV. Welcoming Infinitary Objects and Reasoning  Leibniz spent quite a bit time thinking
about infinitary objects and reasoning over them. This is of course a massive understate-
ment, in light of his invention of the calculus (see Footnote 8; and note that f was also
given to us by Leibniz), which for him was based on the concept of an infinitesimal, not
on the concept that serves today as a portal for those introduced to the differential and
integral calculus: the concept of a limit.!!

To conclude this section, we point out that while Hobbes without question
advanced the notion that reasoning is computation (e.g., see Hobbes 1981), he
had a very limited conception of reasoning as compared to Leibniz, and also had
a relatively limited conception of computation as well.

8Lewis (1960) asserts that the universal language, if true to Leibniz, would be ideographic pure
and simple. We disagree. Ideograms can be pictograms, and that possibility is, as we note here,
welcome—but Leibniz also explicitly wanted to allow UL to allow for traditional symbolic
constructions, built out of non-ideographic symbols. We know this because of Leibniz’s seminal
work in connection with giving us (the differential and integral) calculus, which is after all routinely
taught today using Leibniz’s symbolic notation (e.g., j{ where y = f(x)).

9 Axiomatic treatments of arithmetic, e.g., make use of this rule of inference, and then need only
add modus ponens for (first-order & finitary) proof-theoretic completeness.

9The systems of modal logic for which C.I. Lewis is rightly famous are given in the landmark
(Lewis and Langford 1932).

"' An interesting way to see the ultimate consequences, for formal logic, of Leibniz’s infinitary
reasoning in connection with infinitesimals and calculus, is to consider in some detail, from
the perspective of formal logic, the “vindication” of Leibniz’s infinitesimal-based provided by
Robinson (1996). Space limitations make the taking of this way herein beyond scope.



190 S. Bringsjord and N.S. Govindarajulu
12.3 The Leibnizian ‘“Three-Ray’’ Conception of Al

Inspired by Leibniz’s vision of the “art of infallibility,” in the form of both UL and
UC, a heterogenous logic powerful enough to express and rigorize all of systematic
human thought, we can nearly always position some particular Al work we are
undertaking within a view of logic that allows a particular logical system to be
positioned relative to three color-coded dimensions, which correspond to the three
arrows shown in Fig. 12.1. The blue ray corresponds to purely extensional logical
systems, the green the intensional logical systems, the orange to infinitary logical
systems (and the red to diagrammatic logical systems). (In the interests of space, we
leave aside the fact that each of the three main rays technically has a red sub-ray,
which holds those logics that have pictographic elements, in addition to standard
symbolic ones. We only show one red logic in Fig. 12.1.)

We have positioned our own logical system DCEC*, which we use to formalize
a good deal of human communication and cognition (for a recent example, see e.g.
Bringsjord et al. 2014) within Fig. 12.1; it’s location is indicated by the black dot
therein, which the reader will note is quite far down the dimension of increasing
expressivity that ranges from expressive extensional logics (e.g., FOL and SOL),
to logics with intensional operators for knowledge, belief, and obligation (so-called
philosophical logics; for an overview, see Goble 2001). Intensional operators like

V' Infinitary (Aol 2)

DCECH

Deontic Cognitive Event Calculus
(with Castafieda’s )

I. natural language semantics (non-Montagovian)

2. higher-cognition tests (for Psychometric Al)
(false-belief test, deliberative mind-reading
mirror test for self-consciousness ...)

3. ethically correct robots
4.biz & econ simulation

FOL
heterogeneous/visual temporal

temporal+epistemic
temporal+epistemic+deontic

+planning+arg semantics .

L]
Art of Infallibility |

Fig. 12.1 Locating DCEC™ in “three-ray” Leibnizian universe
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Rules of Inference
Syntax

(Ry] [Ro]
Object | Agent | Self [ Agent | ActionType | Action C Event | C(1,P(a,t,0) = K(a,1,9)) C(r,K(a,1,0) = B(a,1,9))
" Moment | Boolean | Fluent | Numeric C@t,0)r<ty...1<m &3] K(a,1,0) Ra]
3 4
K(ay,1q,...K(an,m,9)...) (4
I " . [Rs]
action : Agent x ActionType — Action C(I.K(a.rl 01 = ‘Dz)) N K<“~’2~¢1 )= K(“-’}-‘Dz)
initially : Fluent — Boolean [R(:]
holds : Fluent x Moment — Boolean C(1,B(a,11,01 = 0)) = B(a,13,01) — B(a,13,07)
happens : Event x Moment — Boolean . n n [R7]
C(1,C(11,91 — 62)) — C(tp,01) = C(13,97)
clipped : Moment x Fluent x Moment — Boolean (Rg] (ko]
[ := initiates : Event x Fluent x Moment — Boolean C(1,Vx. ¢ — O[x > 1]) E C(t,01 > 0y — —0p — —07) 2
terminates : Event x Fluent x Moment — Boolean [Ryp]
C(r, MNoosld 000
prior : Moment x Moment — Boolean (101 = 0] = [01 == on = ¥])
interval : Moment x Boolean Blar,0) 0y B(a,1,9) Bla.t,) [ ]
B(a.t,y) ks B(a,r,yA§) 1
* : Agent — Self o o
payoff : Agent x ActionType x Moment — Numeric S(s,h.1,0) [Rp5]
B(h,1,B(s,1,0))
tuz=x:8|c:S|f(ty,...,tn) I(a.I./lappms(afrion(a*,OL)J/)) [R13]
P(a,t’,happens(action(a*,a),t"))
1 :Boolean | = | 0 AW [0V y | B(a,1,0) B(a,r,0(a*,1,0, happens(action(a*,a),1’)))
P(a,1,0) | K(a.t,0) | C(1.0) | S(a.b.1.0) | S(a.1,0) O(a.1,9, happens(action(a* ), 1")) Rea]
O = . 14
B(a,1,0) | D(a, 1, holds(f,")) | (a,t, happens(action(a®,),1")) K(a,t,1(a* 1, happens(action(a*, a),1")))
O(a.t.tb,happenx(uc/iun(u*.Oc)J/)) PP [Rys]

O(a,t,0,7) ¢ O(a,t,y,Y)
Fig. 12.2 DCEC™ syntax and rules of inference

these are first-class elements of the language for DCEC*. This language is shown
in Fig. 12.2. The reader will see that the language is at least generally aligned and
inspired by Leibniz’s UL and UC.

What does the three-ray framework described above imply about the theory
and future of AI? Assuming that every Al system or Al agent can be placed
within our three-ray conceptualization, which is directly inspired by Leibniz’s art
of infallibility, every Al system or Al agent can be placed at a point along one of
the three color-coded axes in this conceptualization. (Watson, for instance, has been
placed on the blue axis or ray.)

We can quickly note that contemporary Al is most a “blue” affair, with some
“green” activity.

As promised, we turn now to a framework that is more fine-grained than the
three-ray one.

12.4 An “Engineeringish’ Leibnizian Theory of Al

We shall be extremely lattitudinarian in our suppositions about the composition of a
logical system .Z, guided to a significant degree by the earlier framework presented
in Bringsjord (2008), and by the points I-IV we have just made about Leibniz’s
work: Each such system will be a quintuple (F, A, S4, Sx, M):
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Logical System .¥

F A formal language defined by an alphabet and a grammar that gen-
erates a space of well-formed formulae. We here use ‘formula’ and
‘formulae’ in an aggressively ecumenical way that takes account of the
founding conceptions and dreams of Leibniz, so that formulas can for
instance even be diagrammatic in nature. For example, in keeping with
(Arkoudas and Bringsjord 2009), our relaxed concept of formula will
allow diagrammatic depictions of seating puzzles to count as formulae.
Another example pointing to how wide a scope we envisage for F is
that any systematic kind of probabilistic or strength-factor parameters
are permitted to be included in, or attached to, formulae.

A An “argument theory” that regiments the concept of a structured, linked
case in support of some formula as conclusion. Notice that we don’t
say ‘proof theory.” Saying this would make the second element of a
logical system much too narrow. We take proofs to be a special case
of arguments.

S A systematic scheme for assessing the validity of a given argument « in
A.

Sr A systematic scheme for assessing the semantic value of a given formula
¢ in F.

M Finally, a metatheory consisting of informative theorems, expressed
and established in classical, deductive ways, regarding the other four
members of .Z, their inter-relationships, and connections to other parts
of the formal (theorem-driven) sciences.

There are well-known theorems in foundational computability theory that let us
assert the following general claim. In the case of computer programs written for
Turing machines, the logical system would be first-order logic.

Simulation in Logic
Given any computer program W that maps inputs from / to outputs in O, its
processing can be captured by search for arguments in a logic system W.

* Inputs would be be formulae from /r whose validity would have to be
established.

e Outputs Or will be computed by filling in slots in the inputs if a successful
argument has been found for the input.

Given that we can simulate an Al system in a logic system, we could then
evaluate the Al system against Leibniz’s goal for a universal logic by looking for
the minimal logic needed to simulate the Al system. There are several criteria for
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ranking logics, but we feel that they are not suited for evaluating Al systems from
the standpoint of Leibniz’s dream. We propose the following Leibnizian criteria to
evaluate logics when they are used to simulate Al. The criteria can be broken up
into representation and reasoning (in keeping with aspects I./UL and II./UC from
Sect. 12.2.2). An earlier version of these criteria can be found in Govindarajulu
et al. (2013). Very broadly, the representation criteria let us evaluate how good a
system is at representing various mental and worldly objects. The reasoning criteria
let us evaluate how good the system is at representing various kinds of reasoning
processes. We assign numeric scores for different criteria; the higher a score, the
more desirable it is.

12.4.1 Criteria for F

We propose the following criteria to establish how strong a representation system is.

12.4.1.1 Degree of Coverage

A representation system should be broad enough to cover all possible types of signs
and structures. Pierce’s Theory of Signs provides a broad account of the types of
signs that one could expect a universal logic to possess. Briefly, an icon has a
morphological mapping to the object it denotes. A symbol has no such mapping
to the object it denotes.!? Mathematical logic used in Al has largely focused on
symbolic formulae. There has been some work in using iconic or visual logics
(e.g., see the Vivid system introduced in Arkoudas and Bringsjord 2009).) A large
part of human reasoning would be difficult to reduce to a purely symbolic form.
In Govindarajalulu et al. (2014), we show some examples of visual/geometric
reasoning used to prove theorems in special relativity theory (Table 12.1).

Table 12.1 Degree of coverage

Coverage

Score Interpretation Example

1 Only symbolic Propositional logic, probability calculus, etc.
1 Only iconic Image processing

2 Both iconic and symbolic Vivid

12The distinction is not always perfect. E.g., {} for the empty set is both iconic and symbolic.
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Table 12.2 Degree of quantification/size

Quantification/size

Score | Interpretation Example

0 Propositional SAT solvers

0.5 First-order with limited quantification | OWL (Baader et al. 2007)

1 First-order Mizar (Naumowicz and Kornilowicz 2009)

2 Second-order, higher-order logics Reverse mathematics project (Simpson 2009)
3 Infinitary logics etc. w-rule (Baker et al. 1992)

12.4.1.2 Degree of Quantification/Size

This captures how many individual objects and concepts a formula can capture
(Table 12.2). Terms referring to sets or classes of objects would be counted as
referring to only a single object. At the lowest level in this scale, we have simple
propositional systems. At the highest levels, we have infinitary logics capable of
expressing infinitely long statements. Such statements would be needed to formally
capture some statements in mathematics which cannot be expressed in a finite
fashion (Barwise 1980).'3

12.4.1.3 Degree of Homoiconicity

Ideally, the representation system should be able to represent its own formulae
and structures in itself easily. The term “homoiconicity” is usually used to refer
to the Lisp class of languages which are capable of natively representing, to various
degrees, their own programs. First-order logic does not have this capability natively,
but one can achieve this by using schemes like Godel numbering. In Bringsjord
and Govindarajulu (2012), we go through several such schemes for first-order logic
(Table 12.3).

The earliest such scheme, due to Godel, assigns a natural number n? for every
formula ¢. Then every such number n? is assigned a term 7¢ in the language. Thus
one could write down sentences in the fashion y(7i?), in which we assert y about
¢. A more recent scheme termed reification assigns terms in a first-order language
L pain to formulae and terms in another first-order language L. The event calculus
(nicely covered and put to Al-use in Mueller 2006) formalism in Al employs this
scheme. In this scheme, states of the world are formulae in L, and are called

Blnfinitary logics are “measured” in terms of length not only of formulae, but e.g. number of
quantifiers permitted in formulae. In the present paper, we leave aside the specifics. But we do
point out to the motivated reader that Fig. 12.1, on the infinitary “ray,” refers to the infinitary logic
L0, Which, in keeping with the standard notation, says that disjunctions/conjunctions can be of
a countably infinite length, whereas the number of quantifiers allowed in given formulae must be
finite.
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Table 12.3 Degree of homoiconicity

Homoiconicity

Score Interpretation Example

0 No native capability First-order logic

1 Can talk about formulae only First-order modal logic Bringsjord et al. (2013)
1 Can talk about arguments only First-order denotational proof languages

2 Arguments and formulae

Table 12.4 Degree of possibility

Possibility

Score Interpretation Example

0 No possibility Propositional logic

1 One mode of possibility Markov logic (Richardson and Domingos 2006)
2 Multiple modes of possibility First-order logic (Halpern 1990)

fluents. For example, formulae in L, stating that the sentence raining in L
never holds would be:

=Vt : holds(raining, t)

Ideally, we should be able to use F to state things not just about objects in F, but
about Sy, Sp, and L itself in general. For example, first-order logic cannot directly

represent first-order proofs, but first-order denotational proof languages can do so
(Arkoudas 2000).

12.4.1.4 Degree of Possibility

Can the formulae represent alternate states-of-affairs or yet unrealized states-of-
affairs? The system should be expressive enough to represent uncertain information,
information that is false but could be true under alternate states of affairs, informa-
tion that could hold in the future, etc.; notice the connection here to our point III
about Leibniz’s art of infallibility. Note that by including possibility, we also include
probablility and uncertainty (Table 12.4).

12.4.1.5 Degree of Intensionality

How good is the system at representing other agents’ mental states? The sys-
tem should be able to represent and reason over knowledge, belief, and other
intensionalities of other agents and itself. While one could refurbish a purely
extensional system to represent intensionalities by various “squeezing” schemes,
such squeezing leads to problems. In Bringsjord and Govindarajulu (2012), we look
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“Jones intends to convince Smith to believe that Jones
believes that were the cat, lying in the foyer now, to be
let out, it would settle, dozing, on the mat.”

(1(5, C(s,B(s, B(jle[c : in(c.u(f : Foyer(f)),m : mat(m)]

N\

intensional operators ut (c)//—)sub]j doze(c, WL) ) ) )
]
/

N
)

subjunctive conditional

Fig. 12.3 Representing intensionality

Table 12.5 Degree of intensionality

Intensionality

Score Interpretation Example

0 No intensionality First-order logic

1 Restricted intensionality Modal logic with no iterated beliefs

2 Full intensionality Unlimited iterated beliefs Bringsjord et al. (2013)

at various schemes for squeezing knowledge into first-order logic and show how
each of the schemes is either incoherent or leads to outright contradictions. These
results suggest that a universal logic should have the facility to directly represent
intensionalities. What would such a scheme look like? A complex intensional
statement and its possible representation in a semi-formal first-order modal notation
is shown in Fig. 12.3 (Table 12.5).

12.4.2 Criteria for S, and Sr

S 4 and Sz capture reasoning in £. We would want them to be as general as possible.
For measuring generality, we borrow a yardstick from computability theory. Since
S and Sy are computer programs, we can measure how general they are by
looking at where they are placed in the computability heirarchy. In this heirarchy, the
lower levels would be populated by the computable schemes. Within the computable
class, we would have the programs ordered by their asymptotic complexity. After
the computable class, we would have the semi-computable class of programs. The
justification is that the higher a scheme is placed, the greater the number of kinds of
reasoning processes it would be able to simulate (Table 12.6).
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Table 12.6 Criteria S4 and S

S4and Sx

Score Interpretation Example

0 Computable and tractable Nearest neighbors

1 Computable and intractable Bayesian networks (Chickering 1996)

2 Uncomputable First-order theoremhood (Boolos et al. 2007)

Table 12.7 Criteria M

Boundary theorems

Score Interpretation Example

0 No boundary theorems Adhoc learning systems

1 Soundness or completeness AIXI no notion of soundness (Hutter 2005)
2 Soundness and completeness First-order logic (Boolos et al. 2007)

12.4.3 Criteria for M

Logical systems are accompanied by a slew of meta-theorems. These frequently are
soundness and completeness results, to start. Logical systems usually have other
meta-theorems that might not be, at least on the surface, that useful for evaluating
Al systems; for example, the compactness theorem for first-order logic. We require
that the logic system contain, at the least, two theorems we term the boundary
theorems. Boundary theorems correspond roughly to soundness and completeness
(Table 12.7).

12.5 Watson Abstractly

We now look at a highly abstract model of how Watson works.'# The abstract model
is what an ideal-observer logicist would see when examining Watson. Looking at
Watson’s initial stages in Fig. 12.4, we see that for a given question Q, multiple
answers {A[,A,,...,A,} are generated. Each of these answers is paired with
multiple pieces of data, the evidence, resulting in (ef‘i, ...,eN). Bach such tuple
(Q; Ai; e'la” R eﬁ;’) is then fed through answer and evidence scorers, resulting in a
feature vector v(q a,) for each (Q, A;) pair.

Each feature vector is then passed through multiple phases as shown in Fig. 12.5.
Within each phase, there are classifiers for different broad categories of questions

1“A more concrete overview of Watson can be found in Ferrucci et al. (2010). While (Ferrucci
and Murdock 2012) delves much more into Watson, for the material in this section one needs to
primarily refer to Gondek et al. (2012).
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Fig. 12.4 Initial stages

Watson pipeline o
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=/ I . . (] EEEEEEEE
Question U<Q’A1>

Fig. 12.5 Final stages
filtering transfer elite
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(e.g., Date, Number, Multiple Choice etc.). Any given v(qa,) passes through at
most one classifier in a phase. The phases essentially serve to reduce the vast
number of answers, so that a final ranking can focus only on an elite set of answers.
Each classifier performs logistic regression on the input, as shown in Fig. 12.6. The
classifier maps the feature vector into a confidence score ¢ € [0, 1].

While the details of the phases are not important for our discussion, we quickly
sketch an abstract version of the phases. For any given question Q, all the v(q a,) are
fed into one classifier in an initial filfering phase. This reduces the set of answers
from n to a much smaller »’, the top n’ based on scores from the classifer. Then
in a normalization phase, the feature values are first normalized with respect to the
n’ instances. The answers are then re-ranked by one classifier in this phase. The
third fransfer phase has specialized classifers to account for rare categories (e.g.
Etymology). The final elite phase then outputs a final ranking of a smaller set of
answers from the previous phase.
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Fig. 12.6 Assigning
confidence scores
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12.5.1 Locating Watson

We confess that there is some “squeezing” that must be done in order to place
Waston within the three-ray space. We accomplish this squeezing by again invoking
an “ideal-observer” perspective when looking at Watson. This perspective is
generated by imagining that an ideal observer, possessed of great intellectual
powers, and able to observe the entire pipeline that takes a question Q and returns
an answer A, offers a classical argument in support of A being the correct answer.
Our ideal observer is well-versed in all manner of statistical inference and machine
learning, and has at his command not only what happens internally when Q as input
yields A as output, but also fully comprehends all the prior processing that went
into the tuning of the pipeline that in the case at hand gave A from Q. From this
perspective, we obtain the following:

Watson
Ray Criterion Score Reason
Ray 1 Coverage 1 Only symbolic at present
Quantification 0.5 First-order (some first-order components)
Homoiconicity 1 First-order
Possibility 1 Support for probability
Intensionality 0 No support for intensionalities
Ray 2 S4and Sy 1 Sub-first-order reasoning
Ray 3 Boundary theorems 0 No formal study of Watson yet

12.6 The Future of Al

We end with some brief remarks about the future of Al in light of the foregoing.
These days there’s much talk about the so-called “Singularity,” the point in time
at which AI systems, having reached the le